scholarly journals SNEQ: Semi-Supervised Attributed Network Embedding with Attention-Based Quantisation

2020 ◽  
Vol 34 (04) ◽  
pp. 4091-4098 ◽  
Author(s):  
Tao He ◽  
Lianli Gao ◽  
Jingkuan Song ◽  
Xin Wang ◽  
Kejie Huang ◽  
...  

Learning accurate low-dimensional embeddings for a network is a crucial task as it facilitates many network analytics tasks. Moreover, the trained embeddings often require a significant amount of space to store, making storage and processing a challenge, especially as large-scale networks become more prevalent. In this paper, we present a novel semi-supervised network embedding and compression method, SNEQ, that is competitive with state-of-art embedding methods while being far more space- and time-efficient. SNEQ incorporates a novel quantisation method based on a self-attention layer that is trained in an end-to-end fashion, which is able to dramatically compress the size of the trained embeddings, thus reduces storage footprint and accelerates retrieval speed. Our evaluation on four real-world networks of diverse characteristics shows that SNEQ outperforms a number of state-of-the-art embedding methods in link prediction, node classification and node recommendation. Moreover, the quantised embedding shows a great advantage in terms of storage and time compared with continuous embeddings as well as hashing methods.

2021 ◽  
Vol 11 (5) ◽  
pp. 2371
Author(s):  
Junjian Zhan ◽  
Feng Li ◽  
Yang Wang ◽  
Daoyu Lin ◽  
Guangluan Xu

As most networks come with some content in each node, attributed network embedding has aroused much research interest. Most existing attributed network embedding methods aim at learning a fixed representation for each node encoding its local proximity. However, those methods usually neglect the global information between nodes distant from each other and distribution of the latent codes. We propose Structural Adversarial Variational Graph Auto-Encoder (SAVGAE), a novel framework which encodes the network structure and node content into low-dimensional embeddings. On one hand, our model captures the local proximity and proximities at any distance of a network by exploiting a high-order proximity indicator named Rooted Pagerank. On the other hand, our method learns the data distribution of each node representation while circumvents the side effect its sampling process causes on learning a robust embedding through adversarial training. On benchmark datasets, we demonstrate that our method performs competitively compared with state-of-the-art models.


Author(s):  
Ziyao Li ◽  
Liang Zhang ◽  
Guojie Song

Many successful methods have been proposed for learning low dimensional representations on large-scale networks, while almost all existing methods are designed in inseparable processes, learning embeddings for entire networks even when only a small proportion of nodes are of interest. This leads to great inconvenience, especially on super-large or dynamic networks, where these methods become almost impossible to implement. In this paper, we formalize the problem of separated matrix factorization, based on which we elaborate a novel objective function that preserves both local and global information. We further propose SepNE, a simple and flexible network embedding algorithm which independently learns representations for different subsets of nodes in separated processes. By implementing separability, our algorithm reduces the redundant efforts to embed irrelevant nodes, yielding scalability to super-large networks, automatic implementation in distributed learning and further adaptations. We demonstrate the effectiveness of this approach on several real-world networks with different scales and subjects. With comparable accuracy, our approach significantly outperforms state-of-the-art baselines in running times on large networks.


Author(s):  
Xiaobo Shen ◽  
Shirui Pan ◽  
Weiwei Liu ◽  
Yew-Soon Ong ◽  
Quan-Sen Sun

Network embedding aims to seek low-dimensional vector representations for network nodes, by preserving the network structure. The network embedding is typically represented in continuous vector, which imposes formidable challenges in storage and computation costs, particularly in large-scale applications. To address the issue, this paper proposes a novel discrete network embedding (DNE) for more compact representations. In particular, DNE learns short binary codes to represent each node. The Hamming similarity between two binary embeddings is then employed to well approximate the ground-truth similarity. A novel discrete multi-class classifier is also developed to expedite classification. Moreover, we propose to jointly learn the discrete embedding and classifier within a unified framework to improve the compactness and discrimination of network embedding. Extensive experiments on node classification consistently demonstrate that DNE exhibits lower storage and computational complexity than state-of-the-art network embedding methods, while obtains competitive classification results.


Author(s):  
Yu Li ◽  
Ying Wang ◽  
Tingting Zhang ◽  
Jiawei Zhang ◽  
Yi Chang

Network embedding is an effective approach to learn the low-dimensional representations of vertices in networks, aiming to capture and preserve the structure and inherent properties of networks. The vast majority of existing network embedding methods exclusively focus on vertex proximity of networks, while ignoring the network internal community structure. However, the homophily principle indicates that vertices within the same community are more similar to each other than those from different communities, thus vertices within the same community should have similar vertex representations. Motivated by this, we propose a novel network embedding framework NECS to learn the Network Embedding with Community Structural information, which preserves the high-order proximity and incorporates the community structure in vertex representation learning. We formulate the problem into a principled optimization framework and provide an effective alternating algorithm to solve it. Extensive experimental results on several benchmark network datasets demonstrate the effectiveness of the proposed framework in various network analysis tasks including network reconstruction, link prediction and vertex classification.


2021 ◽  
Author(s):  
Ganglin Hu ◽  
Jun Pang ◽  
Xian Mo

Abstract Network embedding has shown its effectiveness in many tasks such as link prediction, node classification, and community detection. Most attributed network embedding methods consider topological features and attributed features to obtain a node embedding, but ignore its implicit information behavior features, including information inquiry, interaction, and sharing. This can potentially lead to ineffective performance for downstream applications. In this paper, we propose a novel network embedding framework named information behavior extraction ( IBE ), that incorporates nodes' topological features, attributed features, and information behavior features into a joint embedding framework. To design IBE , we use an existing embedding method (e.g., SDNE, CANE, or CENE) to extract a node's topological features and attributed features into a basic vector. Then, we propose a topic-sensitive network embedding ( TNE ) model to extract node information behavior features and eventually generate information behavior feature vectors. In our TNE model, we propose an importance score rating algorithm ( ISR ), which considers both effects of the topic-based community of a node and its interaction with adjacent nodes to capture a node information behavior features. Eventually, we concatenate a node information behavior feature vector with its basic vector to get its ultimate joint embedding vector. Extensive experiments demonstrate that our method achieves significant and consistent improvements, compared to several state-of-the-art embedding methods on link prediction.


Author(s):  
Wei Wu ◽  
Bin Li ◽  
Ling Chen ◽  
Chengqi Zhang

Attributed network embedding aims to learn a low-dimensional representation for each node of a network, considering both attributes and structure information of the node. However, the learning based methods usually involve substantial cost in time, which makes them impractical without the help of a powerful workhorse. In this paper, we propose a simple yet effective algorithm, named NetHash, to solve this problem only with moderate computing capacity. NetHash employs the randomized hashing technique to encode shallow trees, each of which is rooted at a node of the network. The main idea is to efficiently encode both attributes and structure information of each node by recursively sketching the corresponding rooted tree from bottom (i.e., the predefined highest-order neighboring nodes) to top (i.e., the root node), and particularly, to preserve as much information closer to the root node as possible. Our extensive experimental results show that the proposed algorithm, which does not need learning, runs significantly faster than the state-of-the-art learning-based network embedding methods while achieving competitive or even better performance in accuracy. 


Author(s):  
Junliang Guo ◽  
Linli Xu ◽  
Jingchang Liu

Recent advances in the field of network embedding have shown that low-dimensional network representation is playing a critical role in network analysis. Most existing network embedding methods encode the local proximity of a node, such as the first- and second-order proximities. While being efficient, these methods are short of leveraging the global structural information between nodes distant from each other. In addition, most existing methods learn embeddings on one single fixed network, and thus cannot be generalized to unseen nodes or networks without retraining. In this paper we present SPINE, a method that can jointly capture the local proximity and proximities at any distance, while being inductive to efficiently deal with unseen nodes or networks. Extensive experimental results on benchmark datasets demonstrate the superiority of the proposed framework over the state of the art.


Author(s):  
Hongchang Gao ◽  
Heng Huang

Network embedding has attracted a surge of attention in recent years. It is to learn the low-dimensional representation for nodes in a network, which benefits downstream tasks such as node classification and link prediction. Most of the existing approaches learn node representations only based on the topological structure, yet nodes are often associated with rich attributes in many real-world applications. Thus, it is important and necessary to learn node representations based on both the topological structure and node attributes. In this paper, we propose a novel deep attributed network embedding approach, which can capture the high non-linearity and preserve various proximities in both topological structure and node attributes. At the same time, a novel strategy is proposed to guarantee the learned node representation can encode the consistent and complementary information from the topological structure and node attributes. Extensive experiments on benchmark datasets have verified the effectiveness of our proposed approach.


2021 ◽  
Vol 15 (4) ◽  
pp. 1-26
Author(s):  
Juan-Hui Li ◽  
Ling Huang ◽  
Chang-Dong Wang ◽  
Dong Huang ◽  
Jian-Huang Lai ◽  
...  

Recently, network embedding has received a large amount of attention in network analysis. Although some network embedding methods have been developed from different perspectives, on one hand, most of the existing methods only focus on leveraging the plain network structure, ignoring the abundant attribute information of nodes. On the other hand, for some methods integrating the attribute information, only the lower-order proximities (e.g., microscopic proximity structure) are taken into account, which may suffer if there exists the sparsity issue and the attribute information is noisy. To overcome this problem, the attribute information and mesoscopic community structure are utilized. In this article, we propose a novel network embedding method termed Attributed Network Embedding with Micro-Meso structure, which is capable of preserving both the attribute information and the structural information including the microscopic proximity structure and mesoscopic community structure. In particular, both the microscopic proximity structure and node attributes are factorized by Nonnegative Matrix Factorization (NMF), from which the low-dimensional node representations can be obtained. For the mesoscopic community structure, a community membership strength matrix is inferred by a generative model (i.e., BigCLAM) or modularity from the linkage structure, which is then factorized by NMF to obtain the low-dimensional node representations. The three components are jointly correlated by the low-dimensional node representations, from which two objective functions (i.e., ANEM_B and ANEM_M) can be defined. Two efficient alternating optimization schemes are proposed to solve the optimization problems. Extensive experiments have been conducted to confirm the superior performance of the proposed models over the state-of-the-art network embedding methods.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1407
Author(s):  
Peng Wang ◽  
Jing Zhou ◽  
Yuzhang Liu ◽  
Xingchen Zhou

Knowledge graph embedding aims to embed entities and relations into low-dimensional vector spaces. Most existing methods only focus on triple facts in knowledge graphs. In addition, models based on translation or distance measurement cannot fully represent complex relations. As well-constructed prior knowledge, entity types can be employed to learn the representations of entities and relations. In this paper, we propose a novel knowledge graph embedding model named TransET, which takes advantage of entity types to learn more semantic features. More specifically, circle convolution based on the embeddings of entity and entity types is utilized to map head entity and tail entity to type-specific representations, then translation-based score function is used to learn the presentation triples. We evaluated our model on real-world datasets with two benchmark tasks of link prediction and triple classification. Experimental results demonstrate that it outperforms state-of-the-art models in most cases.


Sign in / Sign up

Export Citation Format

Share Document