scholarly journals ANOMALOUS: A Joint Modeling Approach for Anomaly Detection on Attributed Networks

Author(s):  
Zhen Peng ◽  
Minnan Luo ◽  
Jundong Li ◽  
Huan Liu ◽  
Qinghua Zheng

The key point of anomaly detection on attributed networks lies in the seamless integration of network structure information and attribute information. A vast majority of existing works are mainly based on the Homophily assumption that implies the nodal attribute similarity of connected nodes. Nonetheless, this assumption is untenable in practice as the existence of noisy and structurally irrelevant attributes may adversely affect the anomaly detection performance. Despite the fact that recent attempts perform subspace selection to address this issue, these algorithms treat subspace selection and anomaly detection as two separate steps which often leads to suboptimal solutions. In this paper, we investigate how to fuse attribute and network structure information more synergistically to avoid the adverse effects brought by noisy and structurally irrelevant attributes. Methodologically, we propose a novel joint framework to conduct attribute selection and anomaly detection as a whole based on CUR decomposition and residual analysis. By filtering out noisy and irrelevant node attributes, we perform anomaly detection with the remaining representative attributes. Experimental results on both synthetic and real-world datasets corroborate the effectiveness of the proposed framework.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Peng Yuan ◽  
Lei Jiang ◽  
Jianxun Liu ◽  
Dong Zhou ◽  
Pei Li ◽  
...  

With the development of 5G, the advancement of basic infrastructure has led to considerable development in related research and technology. It also promotes the development of various smart devices and social platforms. More and more people are now using smart devices to post their reviews right after something happens. In order to keep pace with this trend, we propose a method to analyze users’ sentiment by using their text data. When analyzing users’ text data, it is noted that a user’s review may contain many aspects. Traditional text classification methods used by smart devices, however, usually ignore the importance of multiple aspects of a review. Additionally, most algorithms usually ignore the network structure information between the words in a sentence and the sentence itself. To address these issues, we propose a novel dual-level attention-based heterogeneous graph convolutional network for aspect-based sentiment classification which minds more context information through information propagation along with graphs. Particularly, we first propose a flexible HIN (heterogeneous information network) framework to model the user-generated reviews. This framework can integrate various types of additional information and capture their relationships to alleviate semantic sparsity of some labeled data. This framework can also leverage the full advantage of the hidden network structure information through information propagation along with graphs. Then, we propose a dual-level attention-based heterogeneous graph convolutional network (DAHGCN), which includes node-level and type-level attentions. The attention mechanisms can analyze the importance of different adjacent nodes and the importance of different types of nodes for the current node. The experimental results on three real-world datasets demonstrated the effectiveness and reliability of our model.


2021 ◽  
Vol 95 ◽  
pp. 102853
Author(s):  
Reuben Tamakloe ◽  
Jungyeol Hong ◽  
Jihoon Tak ◽  
Dongjoo Park

Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 201
Author(s):  
Qinfeng Xiao ◽  
Jing Wang ◽  
Youfang Lin ◽  
Wenbo Gongsa ◽  
Ganghui Hu ◽  
...  

We address the problem of unsupervised anomaly detection for multivariate data. Traditional machine learning based anomaly detection algorithms rely on specific assumptions of normal patterns and fail to model complex feature interactions and relations. Recently, existing deep learning based methods are promising for extracting representations from complex features. These methods train an auxiliary task, e.g., reconstruction and prediction, on normal samples. They further assume that anomalies fail to perform well on the auxiliary task since they are never trained during the model optimization. However, the assumption does not always hold in practice. Deep models may also perform the auxiliary task well on anomalous samples, leading to the failure detection of anomalies. To effectively detect anomalies for multivariate data, this paper introduces a teacher-student distillation based framework Distillated Teacher-Student Network Ensemble (DTSNE). The paradigm of the teacher-student distillation is able to deal with high-dimensional complex features. In addition, an ensemble of student networks provides a better capability to avoid generalizing the auxiliary task performance on anomalous samples. To validate the effectiveness of our model, we conduct extensive experiments on real-world datasets. Experimental results show superior performance of DTSNE over competing methods. Analysis and discussion towards the behavior of our model are also provided in the experiment section.


Author(s):  
Jundong Li ◽  
Harsh Dani ◽  
Xia Hu ◽  
Huan Liu

Attributed networks are pervasive in different domains, ranging from social networks, gene regulatory networks to financial transaction networks. This kind of rich network representation presents challenges for anomaly detection due to the heterogeneity of two data representations. A vast majority of existing algorithms assume certain properties of anomalies are given a prior. Since various types of anomalies in real-world attributed networks co-exist, the assumption that priori knowledge regarding anomalies is available does not hold. In this paper, we investigate the problem of anomaly detection in attributed networks generally from a residual analysis perspective, which has been shown to be effective in traditional anomaly detection problems. However, it is a non-trivial task in attributed networks as interactions among instances complicate the residual modeling process. Methodologically, we propose a learning framework to characterize the residuals of attribute information and its coherence with network information for anomaly detection. By learning and analyzing the residuals, we detect anomalies whose behaviors are singularly different from the majority. Experiments on real datasets show the effectiveness and generality of the proposed framework.


Author(s):  
Yang Fang ◽  
Xiang Zhao ◽  
Zhen Tan

Network Embedding (NE) is an important method to learn the representations of network via a low-dimensional space. Conventional NE models focus on capturing the structure information and semantic information of vertices while neglecting such information for edges. In this work, we propose a novel NE model named BimoNet to capture both the structure and semantic information of edges. BimoNet is composed of two parts, i.e., the bi-mode embedding part and the deep neural network part. For bi-mode embedding part, the first mode named add-mode is used to express the entity-shared features of edges and the second mode named subtract-mode is employed to represent the entity-specific features of edges. These features actually reflect the semantic information. For deep neural network part, we firstly regard the edges in a network as nodes, and the vertices as links, which will not change the overall structure of the whole network. Then we take the nodes' adjacent matrix as the input of the deep neural network as it can obtain similar representations for nodes with similar structure. Afterwards, by jointly optimizing the objective function of these two parts, BimoNet could preserve both the semantic and structure information of edges. In experiments, we evaluate BimoNet on three real-world datasets and task of relation extraction, and BimoNet is demonstrated to outperform state-of-the-art baseline models consistently and significantly.


2021 ◽  
Vol 30 (4) ◽  
pp. 441-455
Author(s):  
Rinat Aynulin ◽  
◽  
Pavel Chebotarev ◽  
◽  

Proximity measures on graphs are extensively used for solving various problems in network analysis, including community detection. Previous studies have considered proximity measures mainly for networks without attributes. However, attribute information, node attributes in particular, allows a more in-depth exploration of the network structure. This paper extends the definition of a number of proximity measures to the case of attributed networks. To take node attributes into account, attribute similarity is embedded into the adjacency matrix. Obtained attribute-aware proximity measures are numerically studied in the context of community detection in real-world networks.


2020 ◽  
Vol 34 (04) ◽  
pp. 5956-5963
Author(s):  
Xianfeng Tang ◽  
Huaxiu Yao ◽  
Yiwei Sun ◽  
Charu Aggarwal ◽  
Prasenjit Mitra ◽  
...  

Multivariate time series (MTS) forecasting is widely used in various domains, such as meteorology and traffic. Due to limitations on data collection, transmission, and storage, real-world MTS data usually contains missing values, making it infeasible to apply existing MTS forecasting models such as linear regression and recurrent neural networks. Though many efforts have been devoted to this problem, most of them solely rely on local dependencies for imputing missing values, which ignores global temporal dynamics. Local dependencies/patterns would become less useful when the missing ratio is high, or the data have consecutive missing values; while exploring global patterns can alleviate such problem. Thus, jointly modeling local and global temporal dynamics is very promising for MTS forecasting with missing values. However, work in this direction is rather limited. Therefore, we study a novel problem of MTS forecasting with missing values by jointly exploring local and global temporal dynamics. We propose a new framework øurs, which leverages memory network to explore global patterns given estimations from local perspectives. We further introduce adversarial training to enhance the modeling of global temporal distribution. Experimental results on real-world datasets show the effectiveness of øurs for MTS forecasting with missing values and its robustness under various missing ratios.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Shahram Payandeh ◽  
Eddie Chiu

It is a well-known statistic that the percentage of our older adult population will globally surpass the other age groups. A majority of the elderly would still prefer to keep an active life style. In support of this life style, various monitoring systems are being designed and deployed to have a seamless integration with the daily living activities of the older adults while preserving various levels of their privacy. Motion tracking is one of these health monitoring systems. When properly designed, deployed, integrated, and analyzed, they can be used to assist in determining some onsets of anomalies in the health of elderly at various levels of their Movements and Activities of Daily Living (MADL). This paper explores how the framework of the PageRank algorithm can be extended for monitoring the global movement patterns of older adults at their place of residence. Through utilization of an existing dataset, the paper shows how the movement patterns between various rooms can be represented as a directed graph with weighted edges. To demonstrate how PageRank can be utilized, a base graph representing a normal pattern can be defined as what can be used for further anomaly detection (e.g., at some instances of observation the measured movement pattern deviates from what is previously defined as a normal pattern). It is shown how the PageRank algorithm can detect simulated change in the pattern of motion when compared with the base-line normal pattern. This feature can offer a practical approach for detecting anomalies in movement patterns associated with older adults in their own place of residence and in support of aging in place paradigm.


2016 ◽  
Vol 27 (10) ◽  
pp. 1650115
Author(s):  
Houyi Yan ◽  
Lvlin Hou ◽  
Yunxiang Ling ◽  
Guohua Wu

Research in network controllability has mostly been focused on the effects of the network structure on its controllability, and some methods have been proposed to optimize the network controllability. However, they are all based on global structure information of networks. We propose two different types of methods to optimize controllability of a directed network by local structure information. Extensive numerical simulation on many modeled networks demonstrates that this method is effective. Since the whole topologies of many real networks are not visible and we only get some local structure information, this strategy is potentially more practical.


Sign in / Sign up

Export Citation Format

Share Document