scholarly journals Conditions for Avoiding Node Re-expansions in Bounded Suboptimal Search

Author(s):  
Jingwei Chen ◽  
Nathan R. Sturtevant

Many practical problems are too difficult to solve optimally, motivating the need to found suboptimal solutions, particularly those with bounds on the final solution quality. Algorithms like Weighted A*, A*-epsilon, Optimistic Search, EES, and DPS have been developed to find suboptimal solutions with solution quality that is within a constant bound of the optimal solution. However, with the exception of weighted A*, all of these algorithms require performing node re-expansions during search. This paper explores the properties of priority functions that can find bounded suboptimal solution without requiring node re-expansions. After general bounds are developed, two new convex priority functions are developed that can outperform weighted A*.

Author(s):  
Kedar Nath Das ◽  
Rajeev Das ◽  
Debi Prasanna Acharjya

AbstractTransportation problem (TP) is a popular branch of Linear Programming Problem in the field of Transportation engineering. Over the years, attempts have been made in finding improved approaches to solve the TPs. Recently, in Quddoos et al. (Int J Comput Sci Eng (IJCSE) 4(7): 1271–1274, 2012), an efficient approach, namely ASM, is proposed for solving crisp TPs. However, it is found that ASM fails to provide better optimal solution in some cases. Therefore, a new and efficient ASM appoach is proposed in this paper to enhance the inherent mechanism of the existing ASM method to solve both crisp TPs and Triangular Intuitionistic Fuzzy Transportation Problems (TIFTPs). A least-looping stepping-stone method has been employed as one of the key factors to improve the solution quality, which is an improved version of the existing stepping-stone method (Roy and Hossain in, Operation research Titus Publication, 2015). Unlike stepping stone method, least-looping stepping-stone method only deals with few selected non-basic cells under some prescribed conditions and hence minimizes the computational burden. Therefore, the framework of the proposed method (namely LS-ASM) is a combination of ASM (Quddoos et al. 2012) and least-looping stepping-stone approach. To validate the performance of LS-ASM, a set of six case studies and a real-world problem (those include both crisp TPs and TIFTPs) have been solved. The statistical results obtained by LS-ASM have been well compared with the existing popular modified distribution (MODI) method and the original ASM method, as well. The statistical results confirm the superiority of the LS-ASM over other compared algorithms with a less computationl effort.


Author(s):  
Meng Ning ◽  
Zhi Wu ◽  
Lianjie Chen ◽  
Fan Zhang ◽  
Huitao Chen

Research and design an intelligent bed and chair integration system for assisting inconvenient mobility and aging population. The system consists of a removable detached wheelchair and a c-shaped bed with a fixed structure. The user can switch freely between the mobile wheelchair and the bed to meet the user's requirements of free movement and repositioning.Through the simulation software to analyze the movement characteristics of the bed backboard, the angle of the take-off and landing of the backboard and the sudden change of the take-off and abrupt angular velocity will cause the user to have dizziness and discomfort. In the case of determining the speed of the driving push rod, the relationship between mechanism parameters and installation parameters is the key to affect the lifting rate of the rear plate. Modeling and analysis of each mechanism is performed to determine the relationship between the mechanism parameters and the take-off and landing speed of the backplane. After optimizing the mechanism, the simulation is compared again to obtain the optimal solution. Finally, the optimal solution parameter is the final solution to improve the overall comfort of the nursing bed.


Author(s):  
Tao Wu

For capacitated multi-item lot sizing problems, we propose a predictive search method that integrates machine learning/advanced analytics, mathematical programming, and heuristic search into a single framework. Advanced analytics can predict the probability that an event will happen and has been applied to pressing industry issues, such as credit scoring, risk management, and default management. Although little research has applied such technique for lot sizing problems, we observe that advanced analytics can uncover optimal patterns of setup variables given properties associated with the problems, such as problem attributes, and solution values yielded by linear programming relaxation, column generation, and Lagrangian relaxation. We, therefore, build advanced analytics models that yield information about how likely a solution pattern is the same as the optimum, which is insightful information used to partition the solution space into incumbent, superincumbent, and nonincumbent regions where an analytics-driven heuristic search procedure is applied to build restricted subproblems. These subproblems are solved by a combined mathematical programming technique to improve solution quality iteratively. We prove that the predictive search method can converge to the global optimal solution point. The discussion is followed by computational tests, where comparisons with other methods indicate that our approach can obtain better results for the benchmark problems than other state-of-the-art methods. Summary of Contribution: In this study, we propose a predictive search method that integrates machine learning/advanced analytics, mathematical programming, and heuristic search into a single framework for capacitated multi-item lot sizing problems. The advanced analytics models are used to yield information about how likely a solution pattern is the same as the optimum, which is insightful information used to divide the solution space into incumbent, superincumbent, and nonincumbent regions where an analytics-driven heuristic search procedure is applied to build restricted subproblems. These subproblems are solved by a combined mathematical programming technique to improve solution quality iteratively. We prove that the predictive search method can converge to the global optimal solution point. Through computational tests based on benchmark problems, we observe that the proposed approach can obtain better results than other state-of-the-art methods.


2014 ◽  
Vol 933 ◽  
pp. 97-105
Author(s):  
Hassan Mroue ◽  
Thien My Dao

A new algorithm is presented in order to search for the optimal solution of the manufacturing and fractional cell formation problem. In addition, this paper introduces a new toolkit, which is used to search for the various candidate solutions in a periodic and a waving (diversified) manner. The toolkit consists of 15 tools that play a major role in speeding up the obtainment of the final solution as well as in increasing its efficiency. The application of the binary digit grouping algorithm leads to the creation of manufacturing cells according to the concept of group technology. The nonzero entries, which remain outside the manufacturing cells, are called exceptional elements. When a lot of such elements is obtained, an additional cell called fractional (or remainder) cell may be formed; the aim of which is to reduce their number. This algorithm was tested by using illustrative examples taken from the literature and succeeded to give better or at least similar results when compared to those of other well-known algorithms.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Guojiang Xiong ◽  
Jing Zhang ◽  
Xufeng Yuan ◽  
Dongyuan Shi ◽  
Yu He ◽  
...  

Economic dispatch (ED) is of cardinal significance for the power system operation. It is mathematically a typical complex nonlinear multivariable strongly coupled optimization problem with equality and inequality constraints, especially considering the valve-point effects. In order to effectively solve the problem, a simple yet very young and efficient population-based algorithm named across neighborhood search (ANS) is implemented in this paper. In ANS, a group of individuals collaboratively navigate through the search space for obtaining the optimal solution by simultaneously searching the neighborhoods of multiple superior solutions. Four benchmark test cases with diverse complexities and characteristics are firstly employed to comprehensively verify the feasibility and effectiveness of ANS. The experimental and comparison results fully demonstrate the superiority of ANS in terms of the final solution quality, convergence speed, robustness, and statistics. In addition, the sensitivities of ANS to variations of population size and across-search degree are studied. Furthermore, ANS is applied to a practical provincial power grid of China. All the comparison results consistently indicate that ANS is highly competitive and can be used as a promising alternative for ED problems.


2020 ◽  
Vol 5 (3) ◽  
pp. 143-150
Author(s):  
Netsanet Ferede

In an optimization problem, different candidate solutions are compared with each other, and then the best or optimal solution is obtained which means that solution quality is fundamental. Topology optimization is used at the concept stage of design. It deals with the optimal distribution of material within the structure. Altair Inspire software is the industry's most powerful and easy-to-use Generative Design/Topology Optimization and rapid simulation solution for design engineers. In this paper Topology optimization is applied using Altair inspire to optimize the Sheet metal Angle bracket. Different results are conducted the better and final results are fulfilling the goal of the paper which is minimizing the mass of the sheet metal part by 65.9%  part and Maximizing the stiffness with Better Results of Von- Miss Stress Analysis,  Displacement, and comparison with different load cases.  This can lead to reduced costs, development time, material consumption, and product less weight.


2006 ◽  
Vol 15 (05) ◽  
pp. 803-821 ◽  
Author(s):  
PING YAN ◽  
MINGYUE DING ◽  
CHANGWEN ZHENG

In this paper, the route-planning problems of Unmanned Aerial Vehicle (UAV) in uncertain and adversarial environment are addressed, including not only single-mission route planning in known a priori environment, but also the route replanning in partially known and mission-changeable environments. A mission-adaptable hybrid route-planning algorithm based on flight roadmap is proposed, which combines existing global and local methods (Dijkstra algorithm, SAS and D*) into a two-level framework. The environment information and constraints for UAV are integrated into the procedure of building flight roadmap and searching for routes. The route-planning algorithm utilizes domain-specific knowledge and operates in real time with near-optimal solution quality, which is important to uncertain and adversarial environment. Other planners do not provide all of the functionality, namely real-time planning and replanning, near-optimal solution quality, and the ability to model complex 3D constraints.


Author(s):  
Minghe Sun

Optimization problems with multiple criteria measuring solution quality can be modeled as multiobjective programming problems. Because the objective functions are usually in conflict, there is not a single feasible solution that can optimize all objective functions simultaneously. An optimal solution is one that is most preferred by the decision maker (DM) among all feasible solutions. An optimal solution must be nondominated but a multiobjective programming problem may have, possibly infinitely, many nondominated solutions. Therefore, tradeoffs must be made in searching for an optimal solution. Hence, the DM's preference information is elicited and used when a multiobjective programming problem is solved. The model, concepts and definitions of multiobjective programming are presented and solution methods are briefly discussed. Examples are used to demonstrate the concepts and solution methods. Graphics are used in these examples to facilitate understanding.


Author(s):  
S. P. Anbuudayasankar ◽  
K. Ganesh ◽  
Tzong-Ru Lee

This chapter presents the development of simulated annealing (SA) for a health care application which is modeled as Single Depot Vehicle routing problem called Mixed Vehicle Routing Problem with Backhauls (MVRPB), an extension of Vehicle Routing Problem with Backhauls (VRPB). This variant involves both delivery and pick-up customers and sequence of visiting the customers is mixed. The entire pick-up load should be taken back to depot. The latest rapid advancement of meta-heuristics has shown that it can be applied in practice if they are personified in packaged information technology (IT) solutions along with the combination of a Supply Chain Management (SCM) application integrated with an enterprise resource planning (ERP) resulted to this decision support tool. This chapter provides empirical proof in sustain of the hypothesis, that a population extension of SA with supportive transitions leads to a major increase of efficiency and solution quality for MVRPB if and only if the globally optimal solution is located close to the center of all local optimal solutions.


Author(s):  
Arslan Ali Syed ◽  
Irina Gaponova ◽  
Klaus Bogenberger

The majority of transportation problems include optimizing some sort of cost function. These optimization problems are often NP-hard and have an exponential increase in computation time with the increase in the model size. The problem of matching vehicles to passenger requests in ride hailing (RH) contexts typically falls into this category.Metaheuristics are often utilized for such problems with the aim of finding a global optimal solution. However, such algorithms usually include lots of parameters that need to be tuned to obtain a good performance. Typically multiple simulations are run on diverse small size problems and the parameters values that perform the best on average are chosen for subsequent larger simulations.In contrast to the above approach, we propose training a neural network to predict the parameter values that work the best for an instance of the given problem. We show that various features, based on the problem instance and shareability graph statistics, can be used to predict the solution quality of a matching problem in RH services. Consequently, the values corresponding to the best predicted solution can be selected for the actual problem. We study the effectiveness of above described approach for the static assignment of vehicles to passengers in RH services. We utilized the DriveNow data from Bavarian Motor Works (BMW) for generating passenger requests inside Munich, and for the metaheuristic, we used a large neighborhood search (LNS) algorithm combined with a shareability graph.


Sign in / Sign up

Export Citation Format

Share Document