scholarly journals Patent Citation Dynamics Modeling via Multi-Attention Recurrent Networks

Author(s):  
Taoran Ji ◽  
Zhiqian Chen ◽  
Nathan Self ◽  
Kaiqun Fu ◽  
Chang-Tien Lu ◽  
...  

Modeling and forecasting forward citations to a patent is a central task for the discovery of emerging technologies and for measuring the pulse of inventive progress. Conventional methods for forecasting these forward citations cast the problem as analysis of temporal point processes which rely on the conditional intensity of previously received citations. Recent approaches model the conditional intensity as a chain of recurrent neural networks to capture memory dependency in hopes of reducing the restrictions of the parametric form of the intensity function. For the problem of patent citations, we observe that forecasting a patent's chain of citations benefits from not only the patent's history itself but also from the historical citations of assignees and inventors associated with that patent. In this paper, we propose a sequence-to-sequence model which employs an attention-of-attention mechanism to capture the dependencies of these multiple time sequences. Furthermore, the proposed model is able to forecast both the timestamp and the category of a patent's next citation. Extensive experiments on a large patent citation dataset collected from USPTO demonstrate that the proposed model outperforms state-of-the-art models at forward citation forecasting.

Author(s):  
Dan Werner ◽  
Huy Dang

Abstract As a result of studies demonstrating a correlation between a patent’s value and its forward citation count, patent valuation using forward citations has been increasingly used by practitioners when a patent’s value has not been otherwise established. Although potential limitations of patent citation analysis have been discussed in the past, there is little empirical research demonstrating the sensitivity of estimated patent values to various assumptions embedded within the method. We first summarize an approach that has been used by prior practitioners to estimate the relative value of patents within a portfolio using forward citations, and then perform various analyses to investigate the sensitivity of the approach to certain assumptions. We find that some concerns of prior literature are well-founded, while others are less so. For example, we confirm that biased valuations will result from failure to properly control for patent age and technology. Our analysis also finds that truncation bias is a problem when analyzing recently issued patents, which confirms findings from existing literature. We estimate the rate at which such truncation bias dissipates as patents age and find that the bias for the median patent is reduced to below 10% within five years from the date of publication, although additional variation can remain on an individualized level. Regarding the issue of self-citations, we find that the valuation approach using forward citation analysis can be (but is not always) sensitive to the issue of self-citations, with a median difference of 16.8%. Finally, the valuation approach using forward citation analysis appears to be robust to assumptions underlying patent cohort construction.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Kai Xu ◽  
Yiwen Wang ◽  
Fang Wang ◽  
Yuxi Liao ◽  
Qiaosheng Zhang ◽  
...  

Sequential Monte Carlo estimation on point processes has been successfully applied to predict the movement from neural activity. However, there exist some issues along with this method such as the simplified tuning model and the high computational complexity, which may degenerate the decoding performance of motor brain machine interfaces. In this paper, we adopt a general tuning model which takes recent ensemble activity into account. The goodness-of-fit analysis demonstrates that the proposed model can predict the neuronal response more accurately than the one only depending on kinematics. A new sequential Monte Carlo algorithm based on the proposed model is constructed. The algorithm can significantly reduce the root mean square error of decoding results, which decreases 23.6% in position estimation. In addition, we accelerate the decoding speed by implementing the proposed algorithm in a massive parallel manner on GPU. The results demonstrate that the spike trains can be decoded as point process in real time even with 8000 particles or 300 neurons, which is over 10 times faster than the serial implementation. The main contribution of our work is to enable the sequential Monte Carlo algorithm with point process observation to output the movement estimation much faster and more accurately.


1991 ◽  
Vol 279 (3) ◽  
pp. 855-861 ◽  
Author(s):  
S E Szedlacsek ◽  
R G Duggleby ◽  
M O Vlad

A new type of enzyme kinetic mechanism is suggested by which catalysis may be viewed as a chain reaction. A simple type of one-substrate/one-product reaction mechanism has been analysed from this point of view, and the kinetics, in both the transient and the steady-state phases, has been reconsidered. This analysis, as well as literature data and theoretical considerations, shows that the proposed model is a generalization of the classical ones. As a consequence of the suggested mechanism, the expressions, and in some cases even the significance of classical constants (Km and Vmax.), are altered. Moreover, this mechanism suggests that, between two successive enzyme-binding steps, more than one catalytic act could be accomplished. The reaction catalysed by alcohol dehydrogenase was analysed, and it was shown that this chain-reaction mechanism has a real contribution to the catalytic process, which could become exclusive under particular conditions. Similarly, the mechanism of glycogen phosphorylase is considered, and two partly modified versions of the classical mechanism are proposed. They account for both the existing experimental facts and suggest the possibility of chain-reaction pathways for any polymerase.


2010 ◽  
Vol 42 (02) ◽  
pp. 347-358 ◽  
Author(s):  
Jesper Møller ◽  
Frederic Paik Schoenberg

In this paper we describe methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points are identified, and where we simulate backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and, thus, can be used as a graphical exploratory tool for inspecting the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered.


2014 ◽  
Vol 52 (3) ◽  
pp. 1862-1885 ◽  
Author(s):  
Filippo Cacace ◽  
Alfredo Germani ◽  
Costanzo Manes

1998 ◽  
Vol 35 (2) ◽  
pp. 303-312 ◽  
Author(s):  
Timothy C. Brown ◽  
Kais Hamza ◽  
Aihua Xia

Criteria are determined for the variance to mean ratio to be greater than one (over-dispersed) or less than one (under-dispersed). This is done for random variables which are functions of a Markov chain in continuous time, and for the counts in a simple point process on the line. The criteria for the Markov chain are in terms of the infinitesimal generator and those for the point process in terms of the conditional intensity. Examples include a conjecture of Faddy (1994). The case of time-reversible point processes is particularly interesting, and here underdispersion is not possible. In particular, point processes which arise from Markov chains which are time-reversible, have finitely many states and are irreducible are always overdispersed.


Sign in / Sign up

Export Citation Format

Share Document