scholarly journals Exploiting Interaction Links for Node Classification with Deep Graph Neural Networks

Author(s):  
Hogun Park ◽  
Jennifer Neville

Node classification is an important problem in relational machine learning. However, in scenarios where graph edges represent interactions among the entities (e.g., over time), the majority of current methods either summarize the interaction information into link weights or aggregate the links to produce a static graph. In this paper, we propose a neural network architecture that jointly captures both temporal and static interaction patterns, which we call Temporal-Static-Graph-Net (TSGNet). Our key insight is that leveraging both a static neighbor encoder, which can learn aggregate neighbor patterns, and a graph neural network-based recurrent unit, which can capture complex interaction patterns, improve the performance of node classification. In our experiments on node classification tasks, TSGNet produces significant gains compared to state-of-the-art methods—reducing classification error up to 24% and an average of 10% compared to the best competitor on four real-world networks and one synthetic dataset.

2020 ◽  
Author(s):  
Douglas Meneghetti ◽  
Reinaldo Bianchi

This work proposes a neural network architecture that learns policies for multiple agent classes in a heterogeneous multi-agent reinforcement setting. The proposed network uses directed labeled graph representations for states, encodes feature vectors of different sizes for different entity classes, uses relational graph convolution layers to model different communication channels between entity types and learns distinct policies for different agent classes, sharing parameters wherever possible. Results have shown that specializing the communication channels between entity classes is a promising step to achieve higher performance in environments composed of heterogeneous entities.


2021 ◽  
Author(s):  
◽  
Martin Mundt

Deep learning with neural networks seems to have largely replaced traditional design of computer vision systems. Automated methods to learn a plethora of parameters are now used in favor of previously practiced selection of explicit mathematical operators for a specific task. The entailed promise is that practitioners no longer need to take care of every individual step, but rather focus on gathering big amounts of data for neural network training. As a consequence, both a shift in mindset towards a focus on big datasets, as well as a wave of conceivable applications based exclusively on deep learning can be observed. This PhD dissertation aims to uncover some of the only implicitly mentioned or overlooked deep learning aspects, highlight unmentioned assumptions, and finally introduce methods to address respective immediate weaknesses. In the author’s humble opinion, these prevalent shortcomings can be tied to the fact that the involved steps in the machine learning workflow are frequently decoupled. Success is predominantly measured based on accuracy measures designed for evaluation with static benchmark test sets. Individual machine learning workflow components are assessed in isolation with respect to available data, choice of neural network architecture, and a particular learning algorithm, rather than viewing the machine learning system as a whole in context of a particular application. Correspondingly, in this dissertation, three key challenges have been identified: 1. Choice and flexibility of a neural network architecture. 2. Identification and rejection of unseen unknown data to avoid false predictions. 3. Continual learning without forgetting of already learned information. These latter challenges have already been crucial topics in older literature, alas, seem to require a renaissance in modern deep learning literature. Initially, it may appear that they pose independent research questions, however, the thesis posits that the aspects are intertwined and require a joint perspective in machine learning based systems. In summary, the essential question is thus how to pick a suitable neural network architecture for a specific task, how to recognize which data inputs belong to this context, which ones originate from potential other tasks, and ultimately how to continuously include such identified novel data in neural network training over time without overwriting existing knowledge. Thus, the central emphasis of this dissertation is to build on top of existing deep learning strengths, yet also acknowledge mentioned weaknesses, in an effort to establish a deeper understanding of interdependencies and synergies towards the development of unified solution mechanisms. For this purpose, the main portion of the thesis is in cumulative form. The respective publications can be grouped according to the three challenges outlined above. Correspondingly, chapter 1 is focused on choice and extendability of neural network architectures, analyzed in context of popular image classification tasks. An algorithm to automatically determine neural network layer width is introduced and is first contrasted with static architectures found in the literature. The importance of neural architecture design is then further showcased on a real-world application of defect detection in concrete bridges. Chapter 2 is comprised of the complementary ensuing questions of how to identify unknown concepts and subsequently incorporate them into continual learning. A joint central mechanism to distinguish unseen concepts from what is known in classification tasks, while enabling consecutive training without forgetting or revisiting older classes, is proposed. Once more, the role of the chosen neural network architecture is quantitatively reassessed. Finally, chapter 3 culminates in an overarching view, where developed parts are connected. Here, an extensive survey further serves the purpose to embed the gained insights in the broader literature landscape and emphasizes the importance of a common frame of thought. The ultimately presented approach thus reflects the overall thesis’ contribution to advance neural network based machine learning towards a unified solution that ties together choice of neural architecture with the ability to learn continually and the capability to automatically separate known from unknown data.


2021 ◽  
Vol 3 (1) ◽  
pp. 84-94
Author(s):  
Liang Zhang ◽  
Jingqun Li ◽  
Bin Zhou ◽  
Yan Jia

Identifying fake news on media has been an important issue. This is especially true considering the wide spread of rumors on popular social networks such as Twitter. Various kinds of techniques have been proposed for automatic rumor detection. In this work, we study the application of graph neural networks for rumor classification at a lower level, instead of applying existing neural network architectures to detect rumors. The responses to true rumors and false rumors display distinct characteristics. This suggests that it is essential to capture such interactions in an effective manner for a deep learning network to achieve better rumor detection performance. To this end we present a simplified aggregation graph neural network architecture. Experiments on publicly available Twitter datasets demonstrate that the proposed network has performance on a par with or even better than that of state-of-the-art graph convolutional networks, while significantly reducing the computational complexity.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Minyi Dai ◽  
Mehmet F. Demirel ◽  
Yingyu Liang ◽  
Jia-Mian Hu

AbstractVarious machine learning models have been used to predict the properties of polycrystalline materials, but none of them directly consider the physical interactions among neighboring grains despite such microscopic interactions critically determining macroscopic material properties. Here, we develop a graph neural network (GNN) model for obtaining an embedding of polycrystalline microstructure which incorporates not only the physical features of individual grains but also their interactions. The embedding is then linked to the target property using a feed-forward neural network. Using the magnetostriction of polycrystalline Tb0.3Dy0.7Fe2 alloys as an example, we show that a single GNN model with fixed network architecture and hyperparameters allows for a low prediction error of ~10% over a group of remarkably different microstructures as well as quantifying the importance of each feature in each grain of a microstructure to its magnetostriction. Such a microstructure-graph-based GNN model, therefore, enables an accurate and interpretable prediction of the properties of polycrystalline materials.


Sign in / Sign up

Export Citation Format

Share Document