scholarly journals Efficient Context-Aware Neural Machine Translation with Layer-Wise Weighting and Input-Aware Gating

Author(s):  
Hongfei Xu ◽  
Deyi Xiong ◽  
Josef van Genabith ◽  
Qiuhui Liu

Existing Neural Machine Translation (NMT) systems are generally trained on a large amount of sentence-level parallel data, and during prediction sentences are independently translated, ignoring cross-sentence contextual information. This leads to inconsistency between translated sentences. In order to address this issue, context-aware models have been proposed. However, document-level parallel data constitutes only a small part of the parallel data available, and many approaches build context-aware models based on a pre-trained frozen sentence-level translation model in a two-step training manner. The computational cost of these approaches is usually high. In this paper, we propose to make the most of layers pre-trained on sentence-level data in contextual representation learning, reusing representations from the sentence-level Transformer and significantly reducing the cost of incorporating contexts in translation. We find that representations from shallow layers of a pre-trained sentence-level encoder play a vital role in source context encoding, and propose to perform source context encoding upon weighted combinations of pre-trained encoder layers' outputs. Instead of separately performing source context and input encoding, we propose to iteratively and jointly encode the source input and its contexts and to generate input-aware context representations with a cross-attention layer and a gating mechanism, which resets irrelevant information in context encoding. Our context-aware Transformer model outperforms the recent CADec [Voita et al., 2019c] on the English-Russian subtitle data and is about twice as fast in training and decoding.

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1589
Author(s):  
Yongkeun Hwang ◽  
Yanghoon Kim ◽  
Kyomin Jung

Neural machine translation (NMT) is one of the text generation tasks which has achieved significant improvement with the rise of deep neural networks. However, language-specific problems such as handling the translation of honorifics received little attention. In this paper, we propose a context-aware NMT to promote translation improvements of Korean honorifics. By exploiting the information such as the relationship between speakers from the surrounding sentences, our proposed model effectively manages the use of honorific expressions. Specifically, we utilize a novel encoder architecture that can represent the contextual information of the given input sentences. Furthermore, a context-aware post-editing (CAPE) technique is adopted to refine a set of inconsistent sentence-level honorific translations. To demonstrate the efficacy of the proposed method, honorific-labeled test data is required. Thus, we also design a heuristic that labels Korean sentences to distinguish between honorific and non-honorific styles. Experimental results show that our proposed method outperforms sentence-level NMT baselines both in overall translation quality and honorific translations.


2020 ◽  
Vol 34 (05) ◽  
pp. 9498-9506 ◽  
Author(s):  
Hyeongu Yun ◽  
Yongkeun Hwang ◽  
Kyomin Jung

Fully Attentional Networks (FAN) like Transformer (Vaswani et al. 2017) has shown superior results in Neural Machine Translation (NMT) tasks and has become a solid baseline for translation tasks. More recent studies also have reported experimental results that additional contextual sentences improve translation qualities of NMT models (Voita et al. 2018; Müller et al. 2018; Zhang et al. 2018). However, those studies have exploited multiple context sentences as a single long concatenated sentence, that may cause the models to suffer from inefficient computational complexities and long-range dependencies. In this paper, we propose Hierarchical Context Encoder (HCE) that is able to exploit multiple context sentences separately using the hierarchical FAN structure. Our proposed encoder first abstracts sentence-level information from preceding sentences in a self-attentive way, and then hierarchically encodes context-level information. Through extensive experiments, we observe that our HCE records the best performance measured in BLEU score on English-German, English-Turkish, and English-Korean corpus. In addition, we observe that our HCE records the best performance in a crowd-sourced test set which is designed to evaluate how well an encoder can exploit contextual information. Finally, evaluation on English-Korean pronoun resolution test suite also shows that our HCE can properly exploit contextual information.


2021 ◽  
pp. 1-12
Author(s):  
Sahinur Rahman Laskar ◽  
Abdullah Faiz Ur Rahman Khilji ◽  
Partha Pakray ◽  
Sivaji Bandyopadhyay

Language translation is essential to bring the world closer and plays a significant part in building a community among people of different linguistic backgrounds. Machine translation dramatically helps in removing the language barrier and allows easier communication among linguistically diverse communities. Due to the unavailability of resources, major languages of the world are accounted as low-resource languages. This leads to a challenging task of automating translation among various such languages to benefit indigenous speakers. This article investigates neural machine translation for the English–Assamese resource-poor language pair by tackling insufficient data and out-of-vocabulary problems. We have also proposed an approach of data augmentation-based NMT, which exploits synthetic parallel data and shows significantly improved translation accuracy for English-to-Assamese and Assamese-to-English translation and obtained state-of-the-art results.


2021 ◽  
pp. 248-262
Author(s):  
Jörg Tiedemann

This paper presents our on-going efforts to develop a comprehensive data set and benchmark for machine translation beyond high-resource languages. The current release includes 500GB of compressed parallel data for almost 3,000 language pairs covering over 500 languages and language variants. We present the structure of the data set and demonstrate its use for systematic studies based on baseline experiments with multilingual neural machine translation between Finno-Ugric languages and other language groups. Our initial results show the capabilities of training effective multilingual translation models with skewed training data but also stress the shortcomings with low-resource settings and the difficulties to obtain sufficient information through straightforward transfer from related languages.


Author(s):  
Xiaomian Kang ◽  
Yang Zhao ◽  
Jiajun Zhang ◽  
Chengqing Zong

Document-level neural machine translation (DocNMT) has yielded attractive improvements. In this article, we systematically analyze the discourse phenomena in Chinese-to-English translation, and focus on the most obvious ones, namely lexical translation consistency. To alleviate the lexical inconsistency, we propose an effective approach that is aware of the words which need to be translated consistently and constrains the model to produce more consistent translations. Specifically, we first introduce a global context extractor to extract the document context and consistency context, respectively. Then, the two types of global context are integrated into a encoder enhancer and a decoder enhancer to improve the lexical translation consistency. We create a test set to evaluate the lexical consistency automatically. Experiments demonstrate that our approach can significantly alleviate the lexical translation inconsistency. In addition, our approach can also substantially improve the translation quality compared to sentence-level Transformer.


Author(s):  
Abdullahi Arabo ◽  
Qi Shi ◽  
Madjid Merabti

Contextual information and Identity Management (IM) is of paramount importance in the growing use of portable mobile devices for sharing information and communication between emergency services in pervasive ad-hoc environments. Mobile Ad-hoc Networks (MANets) play a vital role within such a context. The concept of ubiquitous/pervasive computing is intrinsically tied to wireless communications. Apart from many remote services, proximity services (context-awareness) are also widely available, and people rely on numerous identities to access these services. The inconvenience of these identities creates significant security vulnerability as well as user discomfort, especially from the network and device point of view in MANet environments. In this article, the authors address how contextual information is represented to facilitate IM and present a User-centered and Context-aware Identity Management (UCIM) framework for MANets.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Gong-Xu Luo ◽  
Ya-Ting Yang ◽  
Rui Dong ◽  
Yan-Hong Chen ◽  
Wen-Bo Zhang

Neural machine translation (NMT) for low-resource languages has drawn great attention in recent years. In this paper, we propose a joint back-translation and transfer learning method for low-resource languages. It is widely recognized that data augmentation methods and transfer learning methods are both straight forward and effective ways for low-resource problems. However, existing methods, which utilize one of these methods alone, limit the capacity of NMT models for low-resource problems. In order to make full use of the advantages of existing methods and further improve the translation performance of low-resource languages, we propose a new method to perfectly integrate the back-translation method with mainstream transfer learning architectures, which can not only initialize the NMT model by transferring parameters of the pretrained models, but also generate synthetic parallel data by translating large-scale monolingual data of the target side to boost the fluency of translations. We conduct experiments to explore the effectiveness of the joint method by incorporating back-translation into the parent-child and the hierarchical transfer learning architecture. In addition, different preprocessing and training methods are explored to get better performance. Experimental results on Uygur-Chinese and Turkish-English translation demonstrate the superiority of the proposed method over the baselines that use single methods.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1213
Author(s):  
Guanghao Xu ◽  
Youngjoong Ko ◽  
Jungyun Seo

Synthetic data has been shown to be effective in training state-of-the-art neural machine translation (NMT) systems. Because the synthetic data is often generated by back-translating monolingual data from the target language into the source language, it potentially contains a lot of noise—weakly paired sentences or translation errors. In this paper, we propose a novel approach to filter this noise from synthetic data. For each sentence pair of the synthetic data, we compute a semantic similarity score using bilingual word embeddings. By selecting sentence pairs according to these scores, we obtain better synthetic parallel data. Experimental results on the IWSLT 2017 Korean→English translation task show that despite using much less data, our method outperforms the baseline NMT system with back-translation by up to 0.72 and 0.62 Bleu points for tst2016 and tst2017, respectively.


Sign in / Sign up

Export Citation Format

Share Document