scholarly journals Tool- and Domain-Agnostic Parameterization of Style Transfer Effects Leveraging Pretrained Perceptual Metrics

Author(s):  
Hiromu Yakura ◽  
Yuki Koyama ◽  
Masataka Goto

Current deep learning techniques for style transfer would not be optimal for design support since their "one-shot" transfer does not fit exploratory design processes. To overcome this gap, we propose parametric transcription, which transcribes an end-to-end style transfer effect into parameter values of specific transformations available in an existing content editing tool. With this approach, users can imitate the style of a reference sample in the tool that they are familiar with and thus can easily continue further exploration by manipulating the parameters. To enable this, we introduce a framework that utilizes an existing pretrained model for style transfer to calculate a perceptual style distance to the reference sample and uses black-box optimization to find the parameters that minimize this distance. Our experiments with various third-party tools, such as Instagram and Blender, show that our framework can effectively leverage deep learning techniques for computational design support.

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1546
Author(s):  
Somya Sharma ◽  
Snigdhansu Chatterjee

With the advent of big data and the popularity of black-box deep learning methods, it is imperative to address the robustness of neural networks to noise and outliers. We propose the use of Winsorization to recover model performances when the data may have outliers and other aberrant observations. We provide a comparative analysis of several probabilistic artificial intelligence and machine learning techniques for supervised learning case studies. Broadly, Winsorization is a versatile technique for accounting for outliers in data. However, different probabilistic machine learning techniques have different levels of efficiency when used on outlier-prone data, with or without Winsorization. We notice that Gaussian processes are extremely vulnerable to outliers, while deep learning techniques in general are more robust.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1514
Author(s):  
Ali Aljofey ◽  
Qingshan Jiang ◽  
Qiang Qu ◽  
Mingqing Huang ◽  
Jean-Pierre Niyigena

Phishing is the easiest way to use cybercrime with the aim of enticing people to give accurate information such as account IDs, bank details, and passwords. This type of cyberattack is usually triggered by emails, instant messages, or phone calls. The existing anti-phishing techniques are mainly based on source code features, which require to scrape the content of web pages, and on third-party services which retard the classification process of phishing URLs. Although the machine learning techniques have lately been used to detect phishing, they require essential manual feature engineering and are not an expert at detecting emerging phishing offenses. Due to the recent rapid development of deep learning techniques, many deep learning-based methods have also been introduced to enhance the classification performance. In this paper, a fast deep learning-based solution model, which uses character-level convolutional neural network (CNN) for phishing detection based on the URL of the website, is proposed. The proposed model does not require the retrieval of target website content or the use of any third-party services. It captures information and sequential patterns of URL strings without requiring a prior knowledge about phishing, and then uses the sequential pattern features for fast classification of the actual URL. For evaluations, comparisons are provided between different traditional machine learning models and deep learning models using various feature sets such as hand-crafted, character embedding, character level TF-IDF, and character level count vectors features. According to the experiments, the proposed model achieved an accuracy of 95.02% on our dataset and an accuracy of 98.58%, 95.46%, and 95.22% on benchmark datasets which outperform the existing phishing URL models.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2739
Author(s):  
Fernando Andres Lovera ◽  
Yudith Coromoto Cardinale ◽  
Masun Nabhan Homsi

The traditional way to address the problem of sentiment classification is based on machine learning techniques; however, these models are not able to grasp all the richness of the text that comes from different social media, personal web pages, blogs, etc., ignoring the semantic of the text. Knowledge graphs give a way to extract structured knowledge from images and texts in order to facilitate their semantic analysis. This work proposes a new hybrid approach for Sentiment Analysis based on Knowledge Graphs and Deep Learning techniques to identify the sentiment polarity (positive or negative) in short documents, such as posts on Twitter. In this proposal, tweets are represented as graphs; then, graph similarity metrics and a Deep Learning classification algorithm are applied to produce sentiment predictions. This approach facilitates the traceability and interpretability of the classification results, thanks to the integration of the Local Interpretable Model-agnostic Explanations (LIME) model at the end of the pipeline. LIME allows raising trust in predictive models, since the model is not a black box anymore. Uncovering the black box allows understanding and interpreting how the network could distinguish between sentiment polarities. Each phase of the proposed approach conformed by pre-processing, graph construction, dimensionality reduction, graph similarity, sentiment prediction, and interpretability steps is described. The proposal is compared with character n-gram embeddings-based Deep Learning models to perform Sentiment Analysis. Results show that the proposal is able to outperforms classical n-gram models, with a recall up to 89% and F1-score of 88%.


2019 ◽  
Vol 78 ◽  
pp. 465-470 ◽  
Author(s):  
Long Liu ◽  
Zhixuan Xi ◽  
RuiRui Ji ◽  
Weigang Ma

Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


Sign in / Sign up

Export Citation Format

Share Document