scholarly journals Multi-Target Invisibly Trojaned Networks for Visual Recognition and Detection

Author(s):  
Xinzhe Zhou ◽  
Wenhao Jiang ◽  
Sheng Qi ◽  
Yadong Mu

Visual backdoor attack is a recently-emerging task which aims to implant trojans in a deep neural model. A trojaned model responds to a trojan-invoking trigger in a fully predictable manner while functioning normally otherwise. As a key motivating fact to this work, most triggers adopted in existing methods, such as a learned patterned block that overlays a benigh image, can be easily noticed by human. In this work, we take image recognition and detection as the demonstration tasks, building trojaned networks that are significantly less human-perceptible and can simultaneously attack multiple targets in an image. The main technical contributions are two-folds: first, under a relaxed attack mode, we formulate trigger embedding as an image steganography-and-steganalysis problem that conceals a secret image in another image in a decipherable and almost invisible way. In specific, a variable number of different triggers can be encoded into a same secret image and fed to an encoder module that does steganography. Secondly, we propose a generic split-and-merge scheme for training a trojaned model. Neurons are split into two sets, trained either for normal image recognition / detection or trojaning the model. To merge them, we novelly propose to hide trojan neurons within the nullspace of the normal ones, such that the two sets do not interfere with each other and the resultant model exhibits similar parameter statistics to a clean model. Comprehensive experiments are conducted on the datasets PASCAL VOC and Microsoft COCO (for detection) and a subset of ImageNet (for recognition). All results clearly demonstrate the effectiveness of our proposed visual trojan method.

Author(s):  
Enrique Mérida-Casermeiro ◽  
Domingo López-Rodríguez ◽  
Juan M. Ortiz-de-Lazcano-Lobato

Since McCulloch and Pitts’ seminal work (McCulloch & Pitts, 1943), several models of discrete neural networks have been proposed, many of them presenting the ability of assigning a discrete value (other than unipolar or bipolar) to the output of a single neuron. These models have focused on a wide variety of applications. One of the most important models was developed by J. Hopfield in (Hopfield, 1982), which has been successfully applied in fields such as pattern and image recognition and reconstruction (Sun et al., 1995), design of analogdigital circuits (Tank & Hopfield, 1986), and, above all, in combinatorial optimization (Hopfield & Tank, 1985) (Takefuji, 1992) (Takefuji & Wang, 1996), among others. The purpose of this work is to review some applications of multivalued neural models to combinatorial optimization problems, focusing specifically on the neural model MREM, since it includes many of the multivalued models in the specialized literature.


Author(s):  
Cruz ◽  
Cristobal ◽  
Michaux ◽  
Barquin

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xinliang Bi ◽  
Xiaoyuan Yang ◽  
Chao Wang ◽  
Jia Liu

Steganography is a technique for publicly transmitting secret information through a cover. Most of the existing steganography algorithms are based on modifying the cover image, generating a stego image that is very similar to the cover image but has different pixel values, or establishing a mapping relationship between the stego image and the secret message. Attackers will discover the existence of secret communications from these modifications or differences. In order to solve this problem, we propose a steganography algorithm ISTNet based on image style transfer, which can convert a cover image into another stego image with a completely different style. We have improved the decoder so that the secret image features can be fused with style features in a variety of sizes to improve the accuracy of secret image extraction. The algorithm has the functions of image steganography and image style transfer at the same time, and the images it generates are both stego images and stylized images. Attackers will pay more attention to the style transfer side of the algorithm, but it is difficult to find the steganography side. Experiments show that our algorithm effectively increases the steganography capacity from 0.06 bpp to 8 bpp, and the generated stylized images are not significantly different from the stylized images on the Internet.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7253
Author(s):  
Xintao Duan ◽  
Mengxiao Gou ◽  
Nao Liu ◽  
Wenxin Wang ◽  
Chuan Qin

The traditional cover modification steganography method only has low steganography ability. We propose a steganography method based on the convolutional neural network architecture (Xception) of deep separable convolutional layers in order to solve this problem. The Xception architecture is used for image steganography for the first time, which not only increases the width of the network, but also improves the adaptability of network expansion, and adds different receiving fields to carry out multi-scale information in it. By introducing jump connections, we solved the problems of gradient dissipation and gradient descent in the Xception architecture. After cascading the secret image and the mask image, high-quality images can be reconstructed through the network, which greatly improves the speed of steganography. When hiding, only the secret image and the cover image are cascaded, and then the secret image can be embedded in the cover image through the hidden network in order to obtain the secret image. After extraction, the secret image can be reconstructed by bypassing the secret image through the extraction network. The results show that the results that are obtained by our model have high peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), and the average high load capacity is 23.96 bpp (bit per pixel), thus realizing large-capacity image steganography surgery.


Deep learning has attracted more and more attention in speech recognition, visual recognition and other fields. In the field of image processing, using deep learning method can obtain high recognition rate. In this paper, the convolution neural network is used as the basic model of deep learning. The shortcomings of the model are analyzed, and the DBN is used for the image recognition of diseases and insect pests. In the experiment, firstly, we select 10 kinds of disease and pest leaves and 50000 normal leaves, each of which is used for the comparison of algorithm performance.In the judgment of disease and pest species, the algorithm proposed in this study can identify all kinds of diseases and insect pests to the maximum extent, but the corresponding software (openCV, Access) recognition accuracy will gradually reduce along with the increase of the types of diseases and insect pests. In this study, the algorithm proposed in the identification of diseases and insect pests has been kept at about 45%.


2021 ◽  
Vol 38 (4) ◽  
pp. 1113-1121
Author(s):  
Shikha Chaudhary ◽  
Saroj Hiranwal ◽  
Chandra Prakash Gupta

Steganography is the process of concealing sensitive information within cover medium. This study offers an efficient and safe innovative image steganography approach based on graph signal processing (GSP). To scramble the secret image, Arnold cat map transform is used, then Spectral graph wavelet is used to change the cover and scrambled secret image, followed by singular vector decomposition (SVD) of the modified cover image. To create the stego image, an alpha blending process is used. To produce the stego image, GSP-based synthesis is used. By maintaining the inter-pixel correlation, GSP improves the visual quality of the produced stego image. The effects of image processing attacks on the suggested approach are examined. The investigational results and assessment indicate that the proposed steganography scheme is more efficient and robust in terms of quality measures. The quality of stego image is evaluated in respect of PSNR, NCC, SC and AD performance metrics.


Author(s):  
Kokila B. Padeppagol ◽  
Sandhya Rani M H

Image steganography is an art of hiding images secretly within another image. There are several ways of performing image steganography; one among them is the spatial approach.The most popular spatial domain approach of image steganography is the Least Significant Bit (LSB) method, which hides the secret image pixel information in the LSB of the cover image pixel information. In this paper a LSB based steganography approach is used to design hardware architecture for the Image steganography. The Discrete Wavelet Transform (DWT) is used here to transform the cover image into higher and lower wavelet coefficients and use these coefficients in hiding the secret image. the design also includes encryption of secret image data, to provide a higher level of security to the secret image. The steganography system involving the stegno module and a decode module is designed here. The design was simulated, synthesized and implemented on Artix -7 FPGA. The operation hiding and retrieving images was successfully verified through simulations.


2020 ◽  
Vol 20 (11) ◽  
pp. 993
Author(s):  
Martin A. Giese ◽  
Mohammad Hovaidi-Ardestani ◽  
Micheal Stettler

2010 ◽  
Vol 8 (6) ◽  
pp. 53-53
Author(s):  
M. Giese ◽  
F. Fleischer ◽  
A. Casile

Sign in / Sign up

Export Citation Format

Share Document