scholarly journals High-Capacity Image Steganography Based on Improved Xception

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7253
Author(s):  
Xintao Duan ◽  
Mengxiao Gou ◽  
Nao Liu ◽  
Wenxin Wang ◽  
Chuan Qin

The traditional cover modification steganography method only has low steganography ability. We propose a steganography method based on the convolutional neural network architecture (Xception) of deep separable convolutional layers in order to solve this problem. The Xception architecture is used for image steganography for the first time, which not only increases the width of the network, but also improves the adaptability of network expansion, and adds different receiving fields to carry out multi-scale information in it. By introducing jump connections, we solved the problems of gradient dissipation and gradient descent in the Xception architecture. After cascading the secret image and the mask image, high-quality images can be reconstructed through the network, which greatly improves the speed of steganography. When hiding, only the secret image and the cover image are cascaded, and then the secret image can be embedded in the cover image through the hidden network in order to obtain the secret image. After extraction, the secret image can be reconstructed by bypassing the secret image through the extraction network. The results show that the results that are obtained by our model have high peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), and the average high load capacity is 23.96 bpp (bit per pixel), thus realizing large-capacity image steganography surgery.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xinliang Bi ◽  
Xiaoyuan Yang ◽  
Chao Wang ◽  
Jia Liu

Steganography is a technique for publicly transmitting secret information through a cover. Most of the existing steganography algorithms are based on modifying the cover image, generating a stego image that is very similar to the cover image but has different pixel values, or establishing a mapping relationship between the stego image and the secret message. Attackers will discover the existence of secret communications from these modifications or differences. In order to solve this problem, we propose a steganography algorithm ISTNet based on image style transfer, which can convert a cover image into another stego image with a completely different style. We have improved the decoder so that the secret image features can be fused with style features in a variety of sizes to improve the accuracy of secret image extraction. The algorithm has the functions of image steganography and image style transfer at the same time, and the images it generates are both stego images and stylized images. Attackers will pay more attention to the style transfer side of the algorithm, but it is difficult to find the steganography side. Experiments show that our algorithm effectively increases the steganography capacity from 0.06 bpp to 8 bpp, and the generated stylized images are not significantly different from the stylized images on the Internet.


2021 ◽  
Author(s):  
Nandhini Subramanian ◽  
, Jayakanth Kunhoth ◽  
Somaya Al-Maadeed ◽  
Ahmed Bouridane

COVID pandemic has necessitated the need for virtual and online health care systems to avoid contacts. The transfer of sensitive medical information including the chest and lung X-ray happens through untrusted channels making it prone to many possible attacks. This paper aims to secure the medical data of the patients using image steganography when transferring through untrusted channels. A deep learning method with three parts is proposed – preprocessing module, embedding network and the extraction network. Features from the cover image and the secret image are extracted by the preprocessing module. The merged features from the preprocessing module are used to output the stego image by the embedding network. The stego image is given as the input to the extraction network to extract the ingrained secret image. Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) are the evaluation metrics used. Higher PSNR value proves the higher security; robustness of the method and the image results show the higher imperceptibility. The hiding capacity of the proposed method is 100% since the cover image and the secret image are of the same size.


The growth rate of the Internet is exceeding that of any previous technology. As the Internet has become the major medium for transferring sensitive information, the security of the transferred message has now become the utmost priority. To ensure the security of the transmitted data, Image steganography has emerged out as an eminent tool of information hiding. The frequency of availability of image file is high and provides high capacity. In this paper, a method of secure data hiding in image is proposed that uses knight tour positions and further 8-queen positions in 8*8 pixel blocks.The cover image is divided into 8*8 pixel blocks and pixels are selected from each block corresponding to the positions of Knight in 8*8 chessboard starting from different pixel positions. 8-pixel values are selected from alternate knight position. Selected pixels values converted to 8-bit ASCII code and result in 8* 8 bit matrix. 8-Queen’s solution on 8*8 chessboard is applied on 8*8 bit matrix. The bits selected from 8-Queens positions and compared with 8-bit ASCII code of message characters. The proposed algorithm changes the LSB of only some of the pixels based on the above comparison. Based on parameters like PSNR and MSE the efficiency of the method is checked after implementation. Then the comparison done with some already proposed techniques. This is how, image steganography showed interesting and promising results when compared with other techniques.


Author(s):  
Shenghan Mei ◽  
Xiaochun Liu ◽  
Shuli Mei

The locust slice images have all the features such as strong self-similarity, piecewise smoothness and nonlinear texture structure. Multi-scale interpolation operator is an effective tool to describe such structures, but it cannot overcome the influence of noise on images. Therefore, this research designed the Shannon–Cosine wavelet which possesses all the excellent properties such as interpolation, smoothness, compact support and normalization, then constructing multi-scale wavelet interpolative operator, the operator can be applied to decompose and reconstruct the images adaptively. Combining the operator with the local filter operator (mean and median), a multi-scale Shannon–Cosine wavelet denoising algorithm based on cell filtering is constructed in this research. The algorithm overcomes the disadvantages of multi-scale interpolation wavelet, which is only suitable for describing smooth signals, and realizes multi-scale noise reduction of locust slice images. The experimental results show that the proposed method can keep all kinds of texture structures in the slice image of locust. In the experiments, the locust slice images with mixture noise of Gaussian and salt–pepper are taken as examples to compare the performances of the proposed method and other typical denoising methods. The experimental results show that the Peak Signal-To-Noise Ratio (PSNR) of the denoised images obtained by the proposed method is greater 27.3%, 24.6%, 2.94%, 22.9% than Weiner filter, wavelet transform method, median and average filtering, respectively; and the Structural Similarity Index (SSIM) for measuring image quality is greater 31.1%, 31.3%, 15.5%, 10.2% than other four methods, respectively. As the variance of Gaussian white noise increases from 0.02 to 0.1, the values of PSNR and SSIM obtained by the proposed method only decrease by 11.94% and 13.33%, respectively, which are much less than other 4 methods. This shows that the proposed method possesses stronger adaptability.


Author(s):  
Oluwaseun M. Alade ◽  
Elizabeth A. Amusan ◽  
Oluyinka T. Adedeji ◽  
Oluwaseun O. Alo

Steganography deals with the ways of hiding communicated data in such a way that it remains confidential. Finding best position inside cover image to embed text message, maintaining a reasonable trade-off between security, robustness, higher bit embedding rate and imperceptibility are some of the challenges of steganography system. Hence, this paper presents firefly algorithm for finding best positions inside cover image in order to embed text message into cover image using Pixel Value Differencing (PVD) technique. Four different cover image was used. Experimental result showed the cover image with selected location using firefly algorithm as well as the stego image using PVD technique. The stego image was evaluated using Peak Signal to Noise Ratio (PSNR) and Mean square Error (MSE).  Firefly Algorithm with PVD technique produced a promising result for image steganography.


Author(s):  
Diptasree Debnath ◽  
Emlon Ghosh ◽  
Barnali Gupta Banik

Steganography is a widely-used technique for digital data hiding. Image steganography is the most popular among all other kinds of steganography. In this article, a novel key-based blind method for RGB image steganography where multiple images can be hidden simultaneously is described. The proposed method is based on Discrete Cosine Transformation (DCT) and Discrete Wavelet Transformation (DWT) which provides enhanced security as well as improve the quality of the stego. Here, the cover image has been taken as RGB although the method can be implemented on grayscale images as well. The fundamental concept of visual cryptography has been utilized here in order to increase the capacity to a great extent. To make the method more robust and imperceptible, pseudo-random number sequence and a correlation coefficient have been used for embedding and the extraction of the secrets, respectively. The robustness of the method is tested against steganalysis attacks such as crop, rotate, resize, noise addition, and histogram equalization. The method has been applied on multiple sets of images and the quality of the resultant images have been analyzed through various matrices namely ‘Peak Signal to Noise Ratio,' ‘Structural Similarity index,' ‘Structural Content,' and ‘Maximum Difference.' The results obtained are very promising and have been compared with existing methods to prove its efficiency.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
V. Thanikaiselvan ◽  
P. Arulmozhivarman ◽  
S. Subashanthini ◽  
Rengarajan Amirtharajan

Modern day information age is enriched with the advanced network communication expertise but unfortunately at the same time encounters infinite security issues when dealing with secret and/or private information. The storage and transmission of the secret information become highly essential and have led to a deluge of research in this field. In this paper, an optimistic effort has been taken to combine graceful graph along with integer wavelet transform (IWT) to implement random image steganography for secure communication. The implementation part begins with the conversion of cover image into wavelet coefficients through IWT and is followed by embedding secret image in the randomly selected coefficients through graph theory. Finally stegoimage is obtained by applying inverse IWT. This method provides a maximum of 44 dB peak signal to noise ratio (PSNR) for 266646 bits. Thus, the proposed method gives high imperceptibility through high PSNR value and high embedding capacity in the cover image due to adaptive embedding scheme and high robustness against blind attack through graph theoretic random selection of coefficients.


Author(s):  
P.I. Shalupina ◽  
◽  
A.A. Artyomova ◽  

The article deals with the issues of modeling the stress-strain state of the attachment points of the cab of a wheeled chassis of high load capacity. The main design loads are determined. Geometric and computational finite element models are constructed, taking into account the features of the metal structure. The technique of gluing elements of the grid model is applied. The contact interaction of the parts is taken into account. Based on the calculations performed, conclusions are drawn about the compliance of the developed structure with the strength requirements.


2020 ◽  
Vol 13 (4) ◽  
pp. 10-17
Author(s):  
Fadhil Kadhim Zaidan

In this work, a grayscale image steganography scheme is proposed using a discrete wavelet transform (DWT) and singular value decomposition (SVD). In this scheme, 2-level DWT is applied to a cover image to obtain the high frequency band HL2 which is utilized to embed a secret grayscale image based on the SVD technique. The robustness and the imperceptibility of the proposed steganography algorithm are controlled by a scaling factor for obtaining an acceptable trade-off between them. Peak signal to noise ratio (PSNR) and Structural Similarity Index Measure (SSIM) are used for assessing the efficiency of the proposed approach. Experimental results demonstrate that the proposed scheme still holds its validity under different known attacks such as noise addition, filtering, cropping and JPEG compression


Author(s):  
Kokila B. Padeppagol ◽  
Sandhya Rani M H

Image steganography is an art of hiding images secretly within another image. There are several ways of performing image steganography; one among them is the spatial approach.The most popular spatial domain approach of image steganography is the Least Significant Bit (LSB) method, which hides the secret image pixel information in the LSB of the cover image pixel information. In this paper a LSB based steganography approach is used to design hardware architecture for the Image steganography. The Discrete Wavelet Transform (DWT) is used here to transform the cover image into higher and lower wavelet coefficients and use these coefficients in hiding the secret image. the design also includes encryption of secret image data, to provide a higher level of security to the secret image. The steganography system involving the stegno module and a decode module is designed here. The design was simulated, synthesized and implemented on Artix -7 FPGA. The operation hiding and retrieving images was successfully verified through simulations.


Sign in / Sign up

Export Citation Format

Share Document