scholarly journals Learning Generalized Unsolvability Heuristics for Classical Planning

Author(s):  
Simon Ståhlberg ◽  
Guillem Francès ◽  
Jendrik Seipp

Recent work in classical planning has introduced dedicated techniques for detecting unsolvable states, i.e., states from which no goal state can be reached. We approach the problem from a generalized planning perspective and learn first-order-like formulas that characterize unsolvability for entire planning domains. We show how to cast the problem as a self-supervised classification task. Our training data is automatically generated and labeled by exhaustive exploration of small instances of each domain, and candidate features are automatically computed from the predicates used to define the domain. We investigate three learning algorithms with different properties and compare them to heuristics from the literature. Our empirical results show that our approach often captures important classes of unsolvable states with high classification accuracy. Additionally, the logical form of our heuristics makes them easy to interpret and reason about, and can be used to show that the characterizations learned in some domains capture exactly all unsolvable states of the domain.

1999 ◽  
Vol 11 ◽  
pp. 131-167 ◽  
Author(s):  
C. E. Brodley ◽  
M. A. Friedl

This paper presents a new approach to identifying and eliminating mislabeled training instances for supervised learning. The goal of this approach is to improve classification accuracies produced by learning algorithms by improving the quality of the training data. Our approach uses a set of learning algorithms to create classifiers that serve as noise filters for the training data. We evaluate single algorithm, majority vote and consensus filters on five datasets that are prone to labeling errors. Our experiments illustrate that filtering significantly improves classification accuracy for noise levels up to 30 percent. An analytical and empirical evaluation of the precision of our approach shows that consensus filters are conservative at throwing away good data at the expense of retaining bad data and that majority filters are better at detecting bad data at the expense of throwing away good data. This suggests that for situations in which there is a paucity of data, consensus filters are preferable, whereas majority vote filters are preferable for situations with an abundance of data.


2018 ◽  
Vol 6 (2) ◽  
pp. 283-286
Author(s):  
M. Samba Siva Rao ◽  
◽  
M.Yaswanth . ◽  
K. Raghavendra Swamy ◽  
◽  
...  

Author(s):  
Wanli Wang ◽  
Botao Zhang ◽  
Kaiqi Wu ◽  
Sergey A Chepinskiy ◽  
Anton A Zhilenkov ◽  
...  

In this paper, a hybrid method based on deep learning is proposed to visually classify terrains encountered by mobile robots. Considering the limited computing resource on mobile robots and the requirement for high classification accuracy, the proposed hybrid method combines a convolutional neural network with a support vector machine to keep a high classification accuracy while improve work efficiency. The key idea is that the convolutional neural network is used to finish a multi-class classification and simultaneously the support vector machine is used to make a two-class classification. The two-class classification performed by the support vector machine is aimed at one kind of terrain that users are mostly concerned with. Results of the two classifications will be consolidated to get the final classification result. The convolutional neural network used in this method is modified for the on-board usage of mobile robots. In order to enhance efficiency, the convolutional neural network has a simple architecture. The convolutional neural network and the support vector machine are trained and tested by using RGB images of six kinds of common terrains. Experimental results demonstrate that this method can help robots classify terrains accurately and efficiently. Therefore, the proposed method has a significant potential for being applied to the on-board usage of mobile robots.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1367
Author(s):  
Raghida El El Saj ◽  
Ehsan Sedgh Sedgh Gooya ◽  
Ayman Alfalou ◽  
Mohamad Khalil

Privacy-preserving deep neural networks have become essential and have attracted the attention of many researchers due to the need to maintain the privacy and the confidentiality of personal and sensitive data. The importance of privacy-preserving networks has increased with the widespread use of neural networks as a service in unsecured cloud environments. Different methods have been proposed and developed to solve the privacy-preserving problem using deep neural networks on encrypted data. In this article, we reviewed some of the most relevant and well-known computational and perceptual image encryption methods. These methods as well as their results have been presented, compared, and the conditions of their use, the durability and robustness of some of them against attacks, have been discussed. Some of the mentioned methods have demonstrated an ability to hide information and make it difficult for adversaries to retrieve it while maintaining high classification accuracy. Based on the obtained results, it was suggested to develop and use some of the cited privacy-preserving methods in applications other than classification.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yikui Zhai ◽  
He Cao ◽  
Wenbo Deng ◽  
Junying Gan ◽  
Vincenzo Piuri ◽  
...  

Because of the lack of discriminative face representations and scarcity of labeled training data, facial beauty prediction (FBP), which aims at assessing facial attractiveness automatically, has become a challenging pattern recognition problem. Inspired by recent promising work on fine-grained image classification using the multiscale architecture to extend the diversity of deep features, BeautyNet for unconstrained facial beauty prediction is proposed in this paper. Firstly, a multiscale network is adopted to improve the discriminative of face features. Secondly, to alleviate the computational burden of the multiscale architecture, MFM (max-feature-map) is utilized as an activation function which can not only lighten the network and speed network convergence but also benefit the performance. Finally, transfer learning strategy is introduced here to mitigate the overfitting phenomenon which is caused by the scarcity of labeled facial beauty samples and improves the proposed BeautyNet’s performance. Extensive experiments performed on LSFBD demonstrate that the proposed scheme outperforms the state-of-the-art methods, which can achieve 67.48% classification accuracy.


2006 ◽  
Vol 18 (10) ◽  
pp. 2509-2528 ◽  
Author(s):  
Yoshua Bengio ◽  
Martin Monperrus ◽  
Hugo Larochelle

We claim and present arguments to the effect that a large class of manifold learning algorithms that are essentially local and can be framed as kernel learning algorithms will suffer from the curse of dimensionality, at the dimension of the true underlying manifold. This observation invites an exploration of nonlocal manifold learning algorithms that attempt to discover shared structure in the tangent planes at different positions. A training criterion for such an algorithm is proposed, and experiments estimating a tangent plane prediction function are presented, showing its advantages with respect to local manifold learning algorithms: it is able to generalize very far from training data (on learning handwritten character image rotations), where local nonparametric methods fail.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Effective productivity estimates of fresh produced crops are very essential for efficient farming, commercial planning, and logistical support. In the past ten years, machine learning (ML) algorithms have been widely used for grading and classification of agricultural products in agriculture sector. However, the precise and accurate assessment of the maturity level of tomatoes using ML algorithms is still a quite challenging to achieve due to these algorithms being reliant on hand crafted features. Hence, in this paper we propose a deep learning based tomato maturity grading system that helps to increase the accuracy and adaptability of maturity grading tasks with less amount of training data. The performance of proposed system is assessed on the real tomato datasets collected from the open fields using Nikon D3500 CCD camera. The proposed approach achieved an average maturity classification accuracy of 99.8 % which seems to be quite promising in comparison to the other state of art methods.


2013 ◽  
Vol 427-429 ◽  
pp. 2309-2312
Author(s):  
Hai Bin Mei ◽  
Ming Hua Zhang

Alert classifiers built with the supervised classification technique require large amounts of labeled training alerts. Preparing for such training data is very difficult and expensive. Thus accuracy and feasibility of current classifiers are greatly restricted. This paper employs semi-supervised learning to build alert classification model to reduce the number of needed labeled training alerts. Alert context properties are also introduced to improve the classification performance. Experiments have demonstrated the accuracy and feasibility of our approach.


2014 ◽  
Vol 622 ◽  
pp. 75-80
Author(s):  
Baskar Nisha ◽  
B. Madasamy ◽  
J.Jebamalar Tamilselvi

Classification of data on genetic disease is a useful application in microarray analysis. The genetic disease data analysis has the potential for discovering the diseased genes which may be the signature of certain diseases. Machine learning methodologies and data mining techniques are used to predict genetic disease associations of bio informatics data. Among numerous existing methods for gene selection, Backpropagation algorithm has become one of the leading methods and it gives less classification accuracy. It aims to develop a new classification algorithm (Enhanced Backpropagation Algorithm) for genetic disease analysis. Knowledge derived by the Enhanced Backpropagation Algorithm has high classification accuracy with the ability to identify the most significant genes.


Sign in / Sign up

Export Citation Format

Share Document