scholarly journals Learning Spectral Dictionary for Local Representation of Mesh

Author(s):  
Zhongpai Gao ◽  
Junchi Yan ◽  
Guangtao Zhai ◽  
Xiaokang Yang

For meshes, sharing the topology of a template is a common and practical setting in face-, hand-, and body-related applications. Meshes are irregular since each vertex's neighbors are unordered and their orientations are inconsistent with other vertices. Previous methods use isotropic filters or predefined local coordinate systems or learning weighting matrices for each vertex of the template to overcome the irregularity. Learning weighting matrices for each vertex to soft-permute the vertex's neighbors into an implicit canonical order is an effective way to capture the local structure of each vertex. However, learning weighting matrices for each vertex increases the parameter size linearly with the number of vertices and large amounts of parameters are required for high-resolution 3D shapes. In this paper, we learn spectral dictionary (i.e., bases) for the weighting matrices such that the parameter size is independent of the resolution of 3D shapes. The coefficients of the weighting matrix bases for each vertex are learned from the spectral features of the template's vertex and its neighbors in a weight-sharing manner. Comprehensive experiments demonstrate that our model produces state-of-the-art results with a much smaller model size.

Author(s):  
Erik Paul ◽  
Holger Herzog ◽  
Sören Jansen ◽  
Christian Hobert ◽  
Eckhard Langer

Abstract This paper presents an effective device-level failure analysis (FA) method which uses a high-resolution low-kV Scanning Electron Microscope (SEM) in combination with an integrated state-of-the-art nanomanipulator to locate and characterize single defects in failing CMOS devices. The presented case studies utilize several FA-techniques in combination with SEM-based nanoprobing for nanometer node technologies and demonstrate how these methods are used to investigate the root cause of IC device failures. The methodology represents a highly-efficient physical failure analysis flow for 28nm and larger technology nodes.


Author(s):  
Wei Huang ◽  
Xiaoshu Zhou ◽  
Mingchao Dong ◽  
Huaiyu Xu

AbstractRobust and high-performance visual multi-object tracking is a big challenge in computer vision, especially in a drone scenario. In this paper, an online Multi-Object Tracking (MOT) approach in the UAV system is proposed to handle small target detections and class imbalance challenges, which integrates the merits of deep high-resolution representation network and data association method in a unified framework. Specifically, while applying tracking-by-detection architecture to our tracking framework, a Hierarchical Deep High-resolution network (HDHNet) is proposed, which encourages the model to handle different types and scales of targets, and extract more effective and comprehensive features during online learning. After that, the extracted features are fed into different prediction networks for interesting targets recognition. Besides, an adjustable fusion loss function is proposed by combining focal loss and GIoU loss to solve the problems of class imbalance and hard samples. During the tracking process, these detection results are applied to an improved DeepSORT MOT algorithm in each frame, which is available to make full use of the target appearance features to match one by one on a practical basis. The experimental results on the VisDrone2019 MOT benchmark show that the proposed UAV MOT system achieves the highest accuracy and the best robustness compared with state-of-the-art methods.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 511
Author(s):  
Syed Mohammad Minhaz Hossain ◽  
Kaushik Deb ◽  
Pranab Kumar Dhar ◽  
Takeshi Koshiba

Proper plant leaf disease (PLD) detection is challenging in complex backgrounds and under different capture conditions. For this reason, initially, modified adaptive centroid-based segmentation (ACS) is used to trace the proper region of interest (ROI). Automatic initialization of the number of clusters (K) using modified ACS before recognition increases tracing ROI’s scalability even for symmetrical features in various plants. Besides, convolutional neural network (CNN)-based PLD recognition models achieve adequate accuracy to some extent. However, memory requirements (large-scaled parameters) and the high computational cost of CNN-based PLD models are burning issues for the memory restricted mobile and IoT-based devices. Therefore, after tracing ROIs, three proposed depth-wise separable convolutional PLD (DSCPLD) models, such as segmented modified DSCPLD (S-modified MobileNet), segmented reduced DSCPLD (S-reduced MobileNet), and segmented extended DSCPLD (S-extended MobileNet), are utilized to represent the constructive trade-off among accuracy, model size, and computational latency. Moreover, we have compared our proposed DSCPLD recognition models with state-of-the-art models, such as MobileNet, VGG16, VGG19, and AlexNet. Among segmented-based DSCPLD models, S-modified MobileNet achieves the best accuracy of 99.55% and F1-sore of 97.07%. Besides, we have simulated our DSCPLD models using both full plant leaf images and segmented plant leaf images and conclude that, after using modified ACS, all models increase their accuracy and F1-score. Furthermore, a new plant leaf dataset containing 6580 images of eight plants was used to experiment with several depth-wise separable convolution models.


2001 ◽  
Vol 8 (2) ◽  
pp. 199-203 ◽  
Author(s):  
Uwe Bergmann ◽  
Pieter Glatzel ◽  
John H. Robblee ◽  
Johannes Messinger ◽  
Carmen Fernandez ◽  
...  

2018 ◽  
Author(s):  
Rishi Rajalingham ◽  
Elias B. Issa ◽  
Pouya Bashivan ◽  
Kohitij Kar ◽  
Kailyn Schmidt ◽  
...  

ABSTRACTPrimates—including humans—can typically recognize objects in visual images at a glance even in the face of naturally occurring identity-preserving image transformations (e.g. changes in viewpoint). A primary neuroscience goal is to uncover neuron-level mechanistic models that quantitatively explain this behavior by predicting primate performance for each and every image. Here, we applied this stringent behavioral prediction test to the leading mechanistic models of primate vision (specifically, deep, convolutional, artificial neural networks; ANNs) by directly comparing their behavioral signatures against those of humans and rhesus macaque monkeys. Using high-throughput data collection systems for human and monkey psychophysics, we collected over one million behavioral trials for 2400 images over 276 binary object discrimination tasks. Consistent with previous work, we observed that state-of-the-art deep, feed-forward convolutional ANNs trained for visual categorization (termed DCNNIC models) accurately predicted primate patterns of object-level confusion. However, when we examined behavioral performance for individual images within each object discrimination task, we found that all tested DCNNIC models were significantly non-predictive of primate performance, and that this prediction failure was not accounted for by simple image attributes, nor rescued by simple model modifications. These results show that current DCNNIC models cannot account for the image-level behavioral patterns of primates, and that new ANN models are needed to more precisely capture the neural mechanisms underlying primate object vision. To this end, large-scale, high-resolution primate behavioral benchmarks—such as those obtained here—could serve as direct guides for discovering such models.SIGNIFICANCE STATEMENTRecently, specific feed-forward deep convolutional artificial neural networks (ANNs) models have dramatically advanced our quantitative understanding of the neural mechanisms underlying primate core object recognition. In this work, we tested the limits of those ANNs by systematically comparing the behavioral responses of these models with the behavioral responses of humans and monkeys, at the resolution of individual images. Using these high-resolution metrics, we found that all tested ANN models significantly diverged from primate behavior. Going forward, these high-resolution, large-scale primate behavioral benchmarks could serve as direct guides for discovering better ANN models of the primate visual system.


2021 ◽  
Author(s):  
Olesya Yakovchuk ◽  
Jan Maik Wissing

<p>The Atmospheric Ionization during Substorm Model (AISstorm) is the successor of the Atmospheric Ionization Module Osnabrück (AIMOS) and thus may also be considered as AIMOS 2.0 - AISStorm.</p><p>The overall structure was kept mostly unaltered and splits up into an empirical model that determines the 2D precipitating particle flux and a numerical model that determines the ionization profile of single particles. The combination of these two results in a high resolution 3D particle ionization pattern.</p><p>The internal structure of the model has been completely revised with the main aspects being: a) an internal magnetic coordinate system, b) including substorms characteristics, c) higher time resolution, d) higher spatial resolution, e) energy specific separate handling of drift loss cone, auroal precipitation and polar cap precipitation, partly even in separate coordinate systems, f) better MLT resolution and g) covering a longer time period. All these tasks have been matched while keeping the output data format identical, allowing easy transition to the new version.</p>


Author(s):  
Yutong Feng ◽  
Yifan Feng ◽  
Haoxuan You ◽  
Xibin Zhao ◽  
Yue Gao

Mesh is an important and powerful type of data for 3D shapes and widely studied in the field of computer vision and computer graphics. Regarding the task of 3D shape representation, there have been extensive research efforts concentrating on how to represent 3D shapes well using volumetric grid, multi-view and point cloud. However, there is little effort on using mesh data in recent years, due to the complexity and irregularity of mesh data. In this paper, we propose a mesh neural network, named MeshNet, to learn 3D shape representation from mesh data. In this method, face-unit and feature splitting are introduced, and a general architecture with available and effective blocks are proposed. In this way, MeshNet is able to solve the complexity and irregularity problem of mesh and conduct 3D shape representation well. We have applied the proposed MeshNet method in the applications of 3D shape classification and retrieval. Experimental results and comparisons with the state-of-the-art methods demonstrate that the proposed MeshNet can achieve satisfying 3D shape classification and retrieval performance, which indicates the effectiveness of the proposed method on 3D shape representation.


Sign in / Sign up

Export Citation Format

Share Document