scholarly journals Short Term Technology-Assisted-Aerobic Exercise (AlterGR, GlideTrakTM, Vasper) in a Community Fitness Center for Patients with Mild to Moderate Parkinson’s Disease: Subjective Perceptions and Motor Effects

2015 ◽  
Vol 2 (2) ◽  
pp. 1-13
Author(s):  
Nancy Byl ◽  
Brain ◽  
2019 ◽  
Vol 142 (8) ◽  
pp. 2198-2206 ◽  
Author(s):  
Ana Luísa de Almeida Marcelino ◽  
Andreas Horn ◽  
Patricia Krause ◽  
Andrea A Kühn ◽  
Wolf-Julian Neumann

Abstract The basal ganglia and cerebellum are implicated in both motor learning and Parkinson’s disease. Deep brain stimulation (DBS) is an established treatment for advanced Parkinson’s disease that leads to motor and non-motor effects by modulating specific neural pathways. Recently, a disynaptic projection from the subthalamic nucleus (STN) to cerebellar hemispheres was discovered. To investigate the functional significance of this pathway in motor learning, short-term improvement in motor execution in 20 patients with Parkinson’s disease on and off STN-DBS and 20 age-matched healthy controls was studied in a visuomotor task combined with whole-brain connectomics. Motor learning was impaired in Parkinson’s disease off stimulation but was partially restored through DBS. Connectivity between active DBS contacts and a distributed network of brain regions correlated with improvement in motor learning. Region of interest analysis revealed connectivity from active contact to cerebellar hemisphere ipsilateral to hand movement as the strongest predictor for change in motor learning. Peak predictive voxels in the cerebellum localized to Crus II of lobule VII, which also showed higher STN than motor cortex connectivity, suggestive of a connection surpassing motor cortex. Our findings provide new insight into the circuit nature of Parkinson’s disease and the distributed network effects of DBS in motor learning.


2021 ◽  
Vol 11 (8) ◽  
pp. 959
Author(s):  
Konstantin G. Heimrich ◽  
Thomas Lehmann ◽  
Peter Schlattmann ◽  
Tino Prell

Recent evidence suggests that the vagus nerve and autonomic dysfunction play an important role in the pathogenesis of Parkinson’s disease. Using heart rate variability analysis, the autonomic modulation of cardiac activity can be investigated. This meta-analysis aims to assess if analysis of heart rate variability may indicate decreased parasympathetic tone in patients with Parkinson’s disease. The MEDLINE, EMBASE and Cochrane Central databases were searched on 31 December 2020. Studies were included if they: (1) were published in English, (2) analyzed idiopathic Parkinson’s disease and healthy adult controls, and (3) reported at least one frequency- or time-domain heart rate variability analysis parameter, which represents parasympathetic regulation. We included 47 studies with 2772 subjects. Random-effects meta-analyses revealed significantly decreased effect sizes in Parkinson patients for the high-frequency spectral component (HFms2) and the short-term measurement of the root mean square of successive normal-to-normal interval differences (RMSSD). However, heterogeneity was high, and there was evidence for publication bias regarding HFms2. There is some evidence that a more advanced disease leads to an impaired parasympathetic regulation. In conclusion, short-term measurement of RMSSD is a reliable parameter to assess parasympathetically impaired cardiac modulation in Parkinson patients. The measurement should be performed with a predefined respiratory rate.


1997 ◽  
Vol 12 (3) ◽  
pp. 306-314 ◽  
Author(s):  
Viktor Müller ◽  
Bettina Mohr ◽  
Regina Rosin ◽  
Friedemann Pulvermüller ◽  
Friedemann Müller ◽  
...  

Brain ◽  
1992 ◽  
Vol 115 (1) ◽  
pp. 137-154 ◽  
Author(s):  
J. R. BAKER ◽  
N. J. DAVEY ◽  
P. H. ELLAWAY ◽  
C. L. FRIEDILAND

2018 ◽  
Vol 11 (4) ◽  
pp. 867-874 ◽  
Author(s):  
Haidar Salimi Dafsari ◽  
Luisa Weiß ◽  
Monty Silverdale ◽  
Alexandra Rizos ◽  
Prashanth Reddy ◽  
...  

2017 ◽  
Vol 118 (1) ◽  
pp. 363-373 ◽  
Author(s):  
Jessica L. Allen ◽  
J. Lucas McKay ◽  
Andrew Sawers ◽  
Madeleine E. Hackney ◽  
Lena H. Ting

Here we examined changes in muscle coordination associated with improved motor performance after partnered, dance-based rehabilitation in individuals with mild to moderate idiopathic Parkinson’s disease. Using motor module (a.k.a. muscle synergy) analysis, we identified changes in the modular control of overground walking and standing reactive balance that accompanied clinically meaningful improvements in behavioral measures of balance, gait, and disease symptoms after 3 wk of daily Adapted Tango classes. In contrast to previous studies that revealed a positive association between motor module number and motor performance, none of the six participants in this pilot study increased motor module number despite improvements in behavioral measures of balance and gait performance. Instead, motor modules were more consistently recruited and distinctly organized immediately after rehabilitation, suggesting more reliable motor output. Furthermore, the pool of motor modules shared between walking and reactive balance increased after rehabilitation, suggesting greater generalizability of motor module function across tasks. Our work is the first to show that motor module distinctness, consistency, and generalizability are more sensitive to improvements in gait and balance function after short-term rehabilitation than motor module number. Moreover, as similar differences in motor module distinctness, consistency, and generalizability have been demonstrated previously in healthy young adults with and without long-term motor training, our work suggests commonalities in the structure of muscle coordination associated with differences in motor performance across the spectrum from motor impairment to expertise. NEW & NOTEWORTHY We demonstrate changes in neuromuscular control of gait and balance in individuals with Parkinson’s disease after short-term, dance-based rehabilitation. Our work is the first to show that motor module distinctness, consistency, and generalizability across gait and balance are more sensitive than motor module number to improvements in motor performance following short-term rehabilitation. Our results indicate commonalities in muscle coordination improvements associated with motor skill reacquisition due to rehabilitation and motor skill acquisition in healthy individuals.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 380
Author(s):  
Davide Maria Cammisuli ◽  
Ubaldo Bonuccelli ◽  
Simona Daniele ◽  
Claudia Martini ◽  
Jonathan Fusi ◽  
...  

Parkinson’s disease (PD) is characterized by motor and nonmotor features that have an influence on patients’ quality of life at different levels. To date, some evidences have arisen on the effectiveness of physical trainings and nutrients intake in ameliorating functional and cognitive outcomes in PD patients. Physical activity is effective in improving both motor and nonmotor features and recent epidemiological investigations have revealed the pivotal role that dietary patterns may play in reducing the risk of PD highlighting the pathogenesis of the neurodegeneration. Specifically, aerobic exercise shows beneficial effects in improving motor functions and executive control in PD patients, as well as proper nutrition may help in improving neuroprotective agents counteracting neurodegeneration and allows patients to better interact with the medication. Our narrative review critically focused on aerobic exercise and nutrition in PD in order to point out the best prescriptions for brain health of affected patients. Implications for a therapeutic plan and rehabilitation for these patients are also discussed.


Sign in / Sign up

Export Citation Format

Share Document