scholarly journals Electromyographic Determination of Jump Landing Sequence and Pre-activation Times During One-foot Landing

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Willig Gabriel

Introduction: Monopodal jumping is a common gesture in daily life and sports. In the Landing Phase (LF), potential energy is absorbed from the tridimensional stability of the Lower Limb (LH). This stability depends on neuromuscular strategies that include factors such as Muscle Preactivation Times (MAT) and the Sequence of Participation (SP) of the muscle groups. The alteration of TPA has been pointed out as a factor of possible injury. The aim of this study was to determine the preactivation times and participation sequence of the gluteus medius, adductor magnus, rectus femoris, vastus medialis quadriceps, biceps femoris longus, semimembranosus and soleus muscles during the monopodal jump landing in university students. At the same time, we sought to determine the existence or not of significant differences between men and women. Materials and methods: Twenty-six young adults, 16 women and 10 men, participated. An inertial sensor and 7 surface electrodes were used to collect electromyographic data in the gluteus medius, rectus femoris and vastus medialis quadriceps, semimembranosus, biceps femoris long head, soleus and adductor magnus muscles. Results: The general activation sequence was Vastus medialis -Biceps femoris longus - Adductor magnus - Gluteus medius - Rectus femoris -Semimembranosus and soleus. The data obtained reflects the activation prior to ground contact of all the muscles studied. There were differences between genders. Women presented a previous activation in all muscles with the exception of the gluteus medius. The muscles with the greatest variability were the adductor magnus in men and the rectus femoris in women. Conclusion: The significant differences found between men and women show that there are trends that can be the beginning to better understand the risk factors for injury generation. The TPA data presented a great variability which could reflect the existence of different activation patterns and not a unique behavior of the MMII musculature.

2014 ◽  
Vol 23 (2) ◽  
pp. 107-122 ◽  
Author(s):  
W. Matthew Silvers ◽  
Eadric Bressel ◽  
D. Clark Dickin ◽  
Garry Killgore ◽  
Dennis G. Dolny

Context:Muscle activation during aquatic treadmill (ATM) running has not been examined, despite similar investigations for other modes of aquatic locomotion and increased interest in ATM running.Objectives:The objectives of this study were to compare normalized (percentage of maximal voluntary contraction; %MVC), absolute duration (aDUR), and total (tACT) lower-extremity muscle activity during land treadmill (TM) and ATM running at the same speeds.Design:Exploratory, quasi-experimental, crossover design.Setting:Athletic training facility.Participants:12 healthy recreational runners (age = 25.8 ± 5 y, height = 178.4 ± 8.2 cm, mass = 71.5 ± 11.5 kg, running experience = 8.2 ± 5.3 y) volunteered for participation.Intervention:All participants performed TM and ATM running at 174.4, 201.2, and 228.0 m/min while surface electromyographic data were collected from the vastus medialis, rectus femoris, gastrocnemius, tibialis anterior, and biceps femoris.Main Outcome Measures:For each muscle, a 2 × 3 repeated-measures ANOVA was used to analyze the main effects and environment–speed interaction (P ≤ .05) of each dependent variable: %MVC, aDUR, and tACT.Results:Compared with TM, ATM elicited significantly reduced %MVC (−44.0%) but increased aDUR (+213.1%) and tACT (+41.9%) in the vastus medialis, increased %MVC (+48.7%) and aDUR (+128.1%) in the rectus femoris during swing phase, reduced %MVC (−26.9%) and tACT (−40.1%) in the gastrocnemius, increased aDUR (+33.1%) and tACT (+35.7%) in the tibialis anterior, and increased aDUR (+41.3%) and tACT (+29.2%) in the biceps femoris. At faster running speeds, there were significant increases in tibialis anterior %MVC (+8.6−15.2%) and tACT (+12.7−17.0%) and rectus femoris %MVC (12.1−26.6%; swing phase).Conclusion:No significant environment–speed interaction effects suggested that observed muscle-activity differences between ATM and TM were due to environmental variation, ie, buoyancy (presumed to decrease %MVC) and drag forces (presumed to increase aDUR and tACT) in the water.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Michèle N. J. Keizer ◽  
Juha M. Hijmans ◽  
Alli Gokeler ◽  
Anne Benjaminse ◽  
Egbert Otten

Abstract Purpose It has been reported that there is no correlation between anterior tibia translation (ATT) in passive and dynamic situations. Passive ATT (ATTp) may be different to dynamic ATT (ATTd) due to muscle activation patterns. This study aimed to investigate whether muscle activation during jumping can control ATT in healthy participants. Methods ATTp of twenty-one healthy participants was measured using a KT-1000 arthrometer. All participants performed single leg hops for distance during which ATTd, knee flexion angles and knee flexion moments were measured using a 3D motion capture system. During both tests, sEMG signals were recorded. Results A negative correlation was found between ATTp and the maximal ATTd (r = − 0.47, p = 0.028). An N-Way ANOVA showed that larger semitendinosus activity was seen when ATTd was larger, while less biceps femoris activity and rectus femoris activity were seen. Moreover, larger knee extension moment, knee flexion angle and ground reaction force in the anterior-posterior direction were seen when ATTd was larger. Conclusion Participants with more ATTp showed smaller ATTd during jump landing. Muscle activation did not contribute to reduce ATTd during impact of a jump-landing at the observed knee angles. However, subjects with large ATTp landed with less knee flexion and consequently showed less ATTd. The results of this study give information on how healthy people control knee laxity during jump-landing. Level of evidence III


2020 ◽  
Vol 4 (02) ◽  
pp. E59-E66
Author(s):  
Roland van den Tillaar ◽  
Stian Larsen

AbstractThe purpose of the study was to compare kinematics and muscle activity between two variations of unilateral squats under different stability conditions. Twelve male volunteers (age: 23±5 years, mass: 80±17 kg, height: 1.81±0.11 m, strength-training experience: 4.3±1.9 years) performed four repetitions with the same external load (≈4RM). Two variations (with the non-stance leg forwards vs. backwards) were performed in a Smith-machine and free-weight condition. The variables were barbell velocity, lifting time and surface electromyography activity of the lower extremity and trunk muscles during the descending and ascending phase. The main findings were 1) peak force was higher when performing the unilateral squats in the Smith machine; 2) peak ascending barbell velocity increased from repetition 3–4 with free weight; and 3) muscle activity from the rectus femoris, vastus lateral, biceps femoris, gluteus medius, and erector spinae increased with repetitions, whereas gluteus, and medial vastus and shank muscles were affected by the conditions. It was concluded that more peak force could be produced because of increased stability. However, peak barbell velocity increased from repetition to repetition in free-weight unilateral squats, which was probably because the participants grew more comfortable. Furthermore, increased instability causes more gluteus and vastus medial activation and foot variations mainly affected the calf muscles.


2018 ◽  
Vol 33 (4) ◽  
pp. 231-237
Author(s):  
Encarnación Liébana ◽  
Cristina Monleón ◽  
Raquel Morales ◽  
Carlos Pablos ◽  
Consuelo Moratal ◽  
...  

Dancers are subjected to high-intensity workouts when they practice dancesport, and according to the literature, they are prone to injury, primarily of the lower limbs. The purpose of this study was to determine whether differences exist in relative activation amplitudes for dancers involved in dancesport due to muscle, gender, and type of dance. Measurements were carried out using surface electromyography equipment during the choreography of a performance in the following leg muscles: rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius medialis. Eight couples of active dancesport athletes (aged 20.50±2.75 yrs) were analyzed. Significant gender differences were found in rumba in the tibialis anterior (p≤0.05) and gastrocnemius medialis (p≤0.05). Based on the different activations, it is possible to establish possible mechanisms of injury, as well as tools for preventing injuries and improving sports performance.


1976 ◽  
Vol 20 (23) ◽  
pp. 548-551
Author(s):  
T. Fukunaga ◽  
K. Yuasa ◽  
M. Kobayashi ◽  
T. Miyagawa ◽  
H. Fujimatsu ◽  
...  

The aim of this study is to measure the integrated EMG in relation to the oxygen uptake during submaximal treadmill and bicycle exercises. Seven healthy adult subjects performed five minute exercise at three different submaximal work intensities on the same day. The EMG activity in right thigh and leg muscles was measured from m. rectus femoris, m. biceps femoris, m. tibialis anterior and m. gastrocnemius by means of four pairs of surface electrodes sealed with collodion to the skin at a distance of 3 cm apart over the belly of muscles. The EMG activity was not likely modified by the possible fatigue during 5 minutes submaximal exercise in this experiment. In the treadmill walking, there was a rectilinear relationship between integrated EMG activity from four muscle groups and percent of VO2max. On the bicycle exercise the correlation coefficient between them was generally lower than that on the treadmill walking. The product of integrated EMG and volume of the same muscle groups was considerably linearly related to oxygen uptake during treadmill and bicycle exercise (the correlation coefficient was 0.945, p < 0.001 in treadmill and 0.710, p < 0.001 in bicycle).


2013 ◽  
Vol 29 (4) ◽  
pp. 421-427 ◽  
Author(s):  
Birgit Unfried ◽  
Arnel Aguinaldo ◽  
Daniel Cipriani

Running on a road for fitness, sport, or recreation poses unique challenges to the runner, one of which is the camber of the surface. Few studies have examined the effects of camber on running, namely, kinematic studies of the knee and ankle. There is currently no information available regarding muscle response to running on a cambered road surface. The purpose of this study was to investigate the effects of a cambered road on lower extremity muscle activity, as measured by electromyography in recreational runners. In addition, this study examined a true outdoor road surface, as opposed to a treadmill surface. The mean muscle activity of the tibialis anterior, lateral gastrocnemius, vastus medialis oblique, biceps femoris, and gluteus medius were studied. Fifteen runners completed multiple running trials on cambered and level surfaces. During the stance phase, mean activities of tibialis anterior, lateral gastrocnemius, and vastus medialis oblique were greater on the gutter side than the crown side. There were no differences in mean muscle activity during the swing phase. The findings of this study suggest that running on a road camber alters the activity of select lower extremity muscles possibly in response to lower extremity compensations to the cambered condition.


Author(s):  
Ruoli Wang ◽  
Laura Martín de Azcárate ◽  
Paul Sandamas ◽  
Anton Arndt ◽  
Elena M. Gutierrez-Farewik

BackgroundAt the beginning of a sprint, the acceleration of the body center of mass (COM) is driven mostly forward and vertically in order to move from an initial crouched position to a more forward-leaning position. Individual muscle contributions to COM accelerations have not been previously studied in a sprint with induced acceleration analysis, nor have muscle contributions to the mediolateral COM accelerations received much attention. This study aimed to analyze major lower-limb muscle contributions to the body COM in the three global planes during the first step of a sprint start. We also investigated the influence of step width on muscle contributions in both naturally wide sprint starts (natural trials) and in sprint starts in which the step width was restricted (narrow trials).MethodMotion data from four competitive sprinters (2 male and 2 female) were collected in their natural sprint style and in trials with a restricted step width. An induced acceleration analysis was performed to study the contribution from eight major lower limb muscles (soleus, gastrocnemius, rectus femoris, vasti, gluteus maximus, gluteus medius, biceps femoris, and adductors) to acceleration of the body COM.ResultsIn natural trials, soleus was the main contributor to forward (propulsion) and vertical (support) COM acceleration and the three vasti (vastus intermedius, lateralis and medialis) were the main contributors to medial COM acceleration. In the narrow trials, soleus was still the major contributor to COM propulsion, though its contribution was considerably decreased. Likewise, the three vasti were still the main contributors to support and to medial COM acceleration, though their contribution was lower than in the natural trials. Overall, most muscle contributions to COM acceleration in the sagittal plane were reduced. At the joint level, muscles contributed overall more to COM support than to propulsion in the first step of sprinting. In the narrow trials, reduced COM propulsion and particularly support were observed compared to the natural trials.ConclusionThe natural wide steps provide a preferable body configuration to propel and support the COM in the sprint starts. No advantage in muscular contributions to support or propel the COM was found in narrower step widths.


2017 ◽  
Vol 24 (4) ◽  
pp. 228-234
Author(s):  
Robert Staszkiewicz ◽  
Michał Kawulak ◽  
Leszek Nosiadek ◽  
Jarosław Omorczyk ◽  
Andrzej Nosiadek

AbstractIntroduction. The aim of this study was to measure the duration of biopotentials in selected muscles of the lower limbs, evaluate the time of elevated bioelectrical activity in these muscles, and identify similarities and differences in electrical phenomena that occur in the muscles for various external settings of a cycle ergometer.Material and methods. The study examined 10 healthy people (5 women and 5 men) aged from 20 to 30 years. A cycle ergometer and EMG apparatus were used in the experiment. The bioelectrical activity of six muscles of the lower limbs (rectus femoris, vastus medialis, tibialis anterior, biceps femoris, gastrocnemius caput mediale, and gastrocnemius caput laterale) was recorded for four different settings of the cycle ergometer (variable saddle height and method of foot attachment to pedals). The EMG records were presented with reference to the bicycle crankset rotation cycle.Conclusions. The study found that changing the height of the saddle of the cycle ergometer and the use of toe clips in the pedals caused changes in bioelectrical activity in the muscles. The adjustment of saddle height affected the duration of potentials more noticeably than the use of toe clips. Furthermore, only one period of elevated electrical activity in the muscles of the lower limbs was found in the pedalling cycle. The longest time of the presence of action potentials was recorded for the m. gastrocnemius caput laterale, whereas the shortest time was observed in the m. vastus medialis.


2019 ◽  
Vol 52 (2) ◽  
pp. 92-96 ◽  
Author(s):  
Beatriz Birelli ◽  
Mauricio Oliveira ◽  
Allan de Oliveira Santos ◽  
Willians Manso ◽  
Andreia Vicente ◽  
...  

Abstract Objective: The purpose of this study was to evaluate the effects of electrical muscle stimulation (EMS) on muscles, using 99mTc-sestamibi SPECT/CT. Materials and Methods: We prospectively enrolled 20 consecutive male professional water polo players. The mean age was 25 years (range, 18-36 years). All athletes underwent 99mTc-sestamibi SPECT/CT of the thigh (rectus femoris and vastus medialis muscle groups) before and after EMS. Images were quantified to identify increases in perfusion after EMS. Results: Before EMS, there were no significant differences between the right and left thigh (rectus femoris and vastus medialis muscles) in terms of perfusion (p = 0.4). However, the comparison between the pre- and post-EMS analyses of the same muscle groups showed significant differences in radiotracer uptake (p < 0.001), with a mean increase in perfusion of 128% for the rectus femoris muscle group (95% CI: 0.86-1.61) and 118% for the vastus medialis muscle group (95% CI: 0.96-1.79). Conclusion: 99mTc-sestamibi SPECT/CT is an objective means of evaluating blood flow in muscles submitted to EMS, which appears to promote significant increases in such blood flow.


Sign in / Sign up

Export Citation Format

Share Document