scholarly journals The Effect of Step Width on Muscle Contributions to Body Mass Center Acceleration During the First Stance of Sprinting

Author(s):  
Ruoli Wang ◽  
Laura Martín de Azcárate ◽  
Paul Sandamas ◽  
Anton Arndt ◽  
Elena M. Gutierrez-Farewik

BackgroundAt the beginning of a sprint, the acceleration of the body center of mass (COM) is driven mostly forward and vertically in order to move from an initial crouched position to a more forward-leaning position. Individual muscle contributions to COM accelerations have not been previously studied in a sprint with induced acceleration analysis, nor have muscle contributions to the mediolateral COM accelerations received much attention. This study aimed to analyze major lower-limb muscle contributions to the body COM in the three global planes during the first step of a sprint start. We also investigated the influence of step width on muscle contributions in both naturally wide sprint starts (natural trials) and in sprint starts in which the step width was restricted (narrow trials).MethodMotion data from four competitive sprinters (2 male and 2 female) were collected in their natural sprint style and in trials with a restricted step width. An induced acceleration analysis was performed to study the contribution from eight major lower limb muscles (soleus, gastrocnemius, rectus femoris, vasti, gluteus maximus, gluteus medius, biceps femoris, and adductors) to acceleration of the body COM.ResultsIn natural trials, soleus was the main contributor to forward (propulsion) and vertical (support) COM acceleration and the three vasti (vastus intermedius, lateralis and medialis) were the main contributors to medial COM acceleration. In the narrow trials, soleus was still the major contributor to COM propulsion, though its contribution was considerably decreased. Likewise, the three vasti were still the main contributors to support and to medial COM acceleration, though their contribution was lower than in the natural trials. Overall, most muscle contributions to COM acceleration in the sagittal plane were reduced. At the joint level, muscles contributed overall more to COM support than to propulsion in the first step of sprinting. In the narrow trials, reduced COM propulsion and particularly support were observed compared to the natural trials.ConclusionThe natural wide steps provide a preferable body configuration to propel and support the COM in the sprint starts. No advantage in muscular contributions to support or propel the COM was found in narrower step widths.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Wenxin Niu ◽  
Lejun Wang ◽  
Chenghua Jiang ◽  
Ming Zhang

The objective of this study was to investigate the effect of dropping height on the forces of joints and muscles in lower extremities during landing. A total of 10 adult subjects were required to landing from three different heights (32 cm, 52 cm, and 72 cm), and the ground reaction force and kinematics of lower extremities were measured. Then, the experimental data were input into the AnyBody Modeling System, in which software the musculoskeletal system of each subject was modeled. The reverse dynamic analysis was done to calculate the joint and muscle forces for each landing trial, and the effect of dropping-landing on the results was evaluated. The computational simulation showed that, with increasing of dropping height, the vertical forces of all the hip, knee, and ankle joints, and the forces of rectus femoris, gluteus maximus, gluteus medius, vastii, biceps femoris and adductor magnus were all significantly increased. The increased dropping height also resulted in earlier activation of the iliopsoas, rectus femoris, gluteus medius, gluteus minimus, and soleus, but latter activation of the tibialis anterior. The quantitative joint and muscle forces can be used as loading conditions in finite element analysis to calculate stress and strain and energy absorption processes in various tissues of the lower limbs.


2015 ◽  
Vol 10 (8) ◽  
pp. 1061-1065 ◽  
Author(s):  
Brice Guignard ◽  
Bjørn H. Olstad ◽  
David Simbaña Escobar ◽  
Jessy Lauer ◽  
Per-Ludvik Kjendlie ◽  
...  

Purpose:To investigate electromyographical (EMG) profiles characterizing the lower-limb flexion-extension in an aquatic environment in high-level breaststrokers.Methods:The 2-dimensional breaststroke kick of 1 international- and 2 national-level female swimmers was analyzed during 2 maximal 25-m swims. The activities of biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior were recorded.Results:The breaststroke kick was divided in 3 phases, according to the movements performed in the sagittal plane: push phase (PP) covering 27% of the total kick duration, glide phase (GP) 41%, and recovery phase (RP) 32%. Intrasubject reproducibility of the EMG and kinematics was observed from 1 stroke cycle to another. In addition, important intersubject kinematic reproducibility was noted, whereas muscle activities discriminated the subjects: The explosive Pp was characterized by important muscle-activation peaks. During the recovery, muscles were likewise solicited for swimmers 1 (S1) and 2 (S2), while the lowest activities were observed during GP for S2 and swimmer 3 (S3), but not for S1, who maintained major muscle solicitations.Conclusions:The main muscle activities were observed during PP to perform powerful lower-limb extension. The most-skilled swimmer (S1) was the only 1 to solicit her muscles during GP to actively reach better streamlining. Important activation peaks during RP correspond to the limbs acting against water drag. Such differences in EMG strategies among an elite group highlight the importance of considering the muscle parameters used to effectively control the intensity of activation among the phases for a more efficient breaststroke kick.


2003 ◽  
Vol 89 (4) ◽  
pp. 1727-1737 ◽  
Author(s):  
Daniel S. Marigold ◽  
Allison J. Bethune ◽  
Aftab E. Patla

Understanding reactive recovery responses to slipping is fundamental in falls research and prevention. The primary purpose of this study was to investigate the role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip. Ten healthy, young adults participated in this experiment in which an unexpected slip was induced by a set of steel free-wheeling rollers. Surface electromyography (EMG) data were collected from the unperturbed limb (i.e., the swing limb) rectus femoris, biceps femoris, tibialis anterior, and the medial head of gastrocnemius, and bilateral gluteus medius, erector spinae, and deltoids. Kinematic data were also collected by an optical imaging system to monitor limb trajectories. The first slip response was significantly different from the subsequent recovery responses to the unexpected slips, with an identifiable reactive recovery response and no proactive changes in EMG patterns. The muscles of the unperturbed limb, upper body, and arms were recruited at the same latency as those previously found for the perturbed limb. The arm elevation strategies assisted in shifting the center of mass forward after it was posteriorly displaced with the slip, while the unperturbed limb musculature demonstrated an extensor strategy supporting the observed lowering of the limb to briefly touch the ground to widen the base of support and to increase stability. Evidently a dynamic multilimb coordinated strategy is employed by the CNS to control and coordinate the upper and lower limbs in reactive recovery responses to unexpected slips during locomotion.


1988 ◽  
Vol 4 (4) ◽  
pp. 315-325 ◽  
Author(s):  
J.-M. John Wilson ◽  
D. Gordon E. Robertson ◽  
J. Peter Stothart

In an effort to seek further understanding of lower limb muscle function in the rowing movement, an electromyographic analysis was undertaken of rowers rowing on a Gjessing ergometer. A strain gauged transducer was inserted in the ergometer linkage between handle and flywheel to detect pulling force. Electrodes were placed on the following lower limb muscles: gluteus maximus, biceps femoris, rectus femoris, vastus lateralis, gastrocnemius, and tibialis anterior. Linear envelope electromyograms from each muscle and the force signals were sampled synchronously at 50 Hz. The results indicated that all six muscles were active from catch to finish of the drive phase. Biceps femoris, gluteus maximus, gastrocnemius, and vastus lateralis all began their activity at or just prior to catch and reached maximal excitation near peak force of the stroke. Rectus femoris and tibialis anterior activity began prior to the catch and reached maximal excitation subsequent to peak force. The coactivation of the five leg muscles, of which four were biarticular, included potentially antagonistic actions that would cancel each other’s effects. Clearly, however, other explanations must be considered. Both gastrocnemius and biceps femoris have been shown to act as knee extensors and may do so in the case of the rowing action. Furthermore, rectus femoris may act with unchanging length as a knee extensor by functioning as a rigid link between the pelvis and tibia. In this manner, energy created by the hip extensors is transferred across the knee joint via the isometrically contracting rectus femoris muscle.


Retos ◽  
2020 ◽  
pp. 354-358
Author(s):  
Oscar David Valencia Cayupán ◽  
María José Hudson ◽  
Felipe Carpes ◽  
Marcos Kunzler ◽  
Fernanda Gándara ◽  
...  

Las lesiones de transeúntes relacionadas al uso de teléfono celular han aumentado en relación con el total de accidentes peatonales. El objetivo de este estudio fue comparar variables cinemáticas y electromiográficas de ambas extremidades inferiores al enfrentar un obstáculo, con (CC) y sin (SC) el uso de celular. Diez mujeres jóvenes fueron evaluadas, las cuales caminaron y enfrentaron un obstáculo CC y SC. Con un modelo biomecánico 3D se evaluó la cinemática de extremidad inferior (plano sagital de cadera, rodilla, tobillo, junto al “toe clearance”). Al mismo tiempo se registró la actividad electromiográfica (EMG) de los siguientes músculos: tibial anterior (TA), gastrocnemio medial (GM), recto anterior (RA) y bíceps femoral (BF). Se calculó la amplitud EMG promedio de cada músculo, y el porcentaje de coactivación muscular entre: TA-GM y RA-BF. Se analizó la estrategia de ambas piernas, considerando un primer (P1) y segundo paso (P2) al cruzar el obstáculo, comparando entre una marcha CC vs CS. Según los resultados, la marcha CC incrementa el toe clearance, flexión de cadera, y la amplitud del GM, observado tanto en P1 como P2 al cruzar el obstáculo. Adicionalmente, el P2 reveló un incremento en la flexión de rodilla y tobillo. Por otro lado, la amplitud del TA y coactivación muscular entre TA-GM también aumentó CC en el P2. En conclusión, las variables cinemáticas y electromiográficas en las extremidades inferiores se modifican al cruzar un obstáculo CC. Estos hallazgos podrían indicar una estrategia protectora durante la tarea dual evaluada, minimizar el riesgo de caída. Abstract. Pedestrian injuries related to the use of cell phone have increased in relation to the total number of pedestrian accidents. The aim of this study was to compare kinematic and electromyographic variables in both lower limbs at facing an obstacle, with (WC) and without (WoC) the use of a cell phone. Ten young women were evaluated, while walking and facing an obstacle WC and WoC. A 3D biomechanical model was used to evaluate the lower limb kinematics (hip, knee, ankle in the sagittal plane, together with “toe clearance”). At the same time, the electromyographic (EMG) activity was registered in the following muscles: tibialis anterior (TA), gastrocnemius medialis (GM), rectus femoris (RF) and biceps femoris (BF). The mean EMG amplitude of each muscle and the muscular coactivation percentage between: TA-GM and RA-BF were calculated. The strategy for both lower limbs considering the first (P1) and the second step (P2) were analyzed when crossing the obstacle, comparing between gait WC vs WoC. According to results, the gait WC increase the toe clearance, hip flexion, and the GM amplitude, observed both in P1 as P2 when the person crossed the obstacle. Furthermore, the P2 revealed an increase in the knee and ankle flexion. On the other hand, the TA amplitude and the muscular coactivation between TA-GM also increased WC in the P2. In conclusion, the kinematic and electromyographic variables in the lower limbs are modified when crossing an obstacle WC. These findings could indicate a protective strategy during the dual-task evaluated, minimizing the risk of falling.


2018 ◽  
Vol 62 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Paulo H. Marchetti ◽  
Mauro A. Guiselini ◽  
Josinaldo J. da Silva ◽  
Raymond Tucker ◽  
David G. Behm ◽  
...  

Abstract In-line and traditional lunge exercises present differences in technique as lower limb positioning (anterioposterior), and medio-lateral (ML) balance may differentially affect primary and stabilizer muscles. The purposes of this study were to examine ML balance and muscle activation in anterior and posterior leg positions between in-line and traditional lunge exercises. Fifteen young, healthy, resistance-trained men (25 ± 5 years) performed 2 different lunge exercises (in-line and traditional) at their 10 repetition maximum in a randomized, counterbalanced fashion. Surface electromyography measured muscle activation of the vastus lateralis, biceps femoris, gluteus maximus, and gluteus medius. ML balance was measured with a Wii Fit Balance Board. The vastus lateralis activity was not significantly different between exercises or leg positions. The biceps femoris activity was not significantly different between exercises, however, it was significantly greater in the anterior compared to the posterior position for the in-line (p = 0.003), and traditional lunge (p < 0.001). The gluteus maximus activity was not significantly different between exercises, however, it was significantly greater in the anterior compared to posterior position for the in-line (p < 0.001) and traditional lunge (p < 0.001). ML balance was significantly greater in the in-line exercise in the anterior limb (p = 0.001). Thus, both in-line and traditional lunge exercises presented similar overall levels of muscle activation, yet the anterior limb generated the highest biceps femoral and gluteus maximus muscle activation when compared to the posterior limb. The in-line lunge presents greater ML balance when compared to the traditional lunge exercise.


2020 ◽  
Vol 4 (02) ◽  
pp. E59-E66
Author(s):  
Roland van den Tillaar ◽  
Stian Larsen

AbstractThe purpose of the study was to compare kinematics and muscle activity between two variations of unilateral squats under different stability conditions. Twelve male volunteers (age: 23±5 years, mass: 80±17 kg, height: 1.81±0.11 m, strength-training experience: 4.3±1.9 years) performed four repetitions with the same external load (≈4RM). Two variations (with the non-stance leg forwards vs. backwards) were performed in a Smith-machine and free-weight condition. The variables were barbell velocity, lifting time and surface electromyography activity of the lower extremity and trunk muscles during the descending and ascending phase. The main findings were 1) peak force was higher when performing the unilateral squats in the Smith machine; 2) peak ascending barbell velocity increased from repetition 3–4 with free weight; and 3) muscle activity from the rectus femoris, vastus lateral, biceps femoris, gluteus medius, and erector spinae increased with repetitions, whereas gluteus, and medial vastus and shank muscles were affected by the conditions. It was concluded that more peak force could be produced because of increased stability. However, peak barbell velocity increased from repetition to repetition in free-weight unilateral squats, which was probably because the participants grew more comfortable. Furthermore, increased instability causes more gluteus and vastus medial activation and foot variations mainly affected the calf muscles.


1998 ◽  
Vol 85 (3) ◽  
pp. 927-934 ◽  
Author(s):  
Li Li ◽  
Graham E. Caldwell

The purpose of the present study was to examine the neuromuscular modifications of cyclists to changes in grade and posture. Eight subjects were tested on a computerized ergometer under three conditions with the same work rate (250 W): pedaling on the level while seated, 8% uphill while seated, and 8% uphill while standing (ST). High-speed video was taken in conjunction with surface electromyography (EMG) of six lower extremity muscles. Results showed that rectus femoris, gluteus maximus (GM), and tibialis anterior had greater EMG magnitude in the ST condition. GM, rectus femoris, and the vastus lateralis demonstrated activity over a greater portion of the crank cycle in the ST condition. The muscle activities of gastrocnemius and biceps femoris did not exhibit profound differences among conditions. Overall, the change of cycling grade alone from 0 to 8% did not induce a significant change in neuromuscular coordination. However, the postural change from seated to ST pedaling at 8% uphill grade was accompanied by increased and/or prolonged muscle activity of hip and knee extensors. The observed EMG activity patterns were discussed with respect to lower extremity joint moments. Monoarticular extensor muscles (GM, vastus lateralis) demonstrated greater modifications in activity patterns with the change in posture compared with their biarticular counterparts. Furthermore, muscle coordination among antagonist pairs of mono- and biarticular muscles was altered in the ST condition; this finding provides support for the notion that muscles within these antagonist pairs have different functions.


2013 ◽  
Vol 109 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Seyed A. Safavynia ◽  
Lena H. Ting

We hypothesized that motor outputs are hierarchically organized such that descending temporal commands based on desired task-level goals flexibly recruit muscle synergies that specify the spatial patterns of muscle coordination that allow the task to be achieved. According to this hypothesis, it should be possible to predict the patterns of muscle synergy recruitment based on task-level goals. We demonstrated that the temporal recruitment of muscle synergies during standing balance control was robustly predicted across multiple perturbation directions based on delayed sensorimotor feedback of center of mass (CoM) kinematics (displacement, velocity, and acceleration). The modulation of a muscle synergy's recruitment amplitude across perturbation directions was predicted by the projection of CoM kinematic variables along the preferred tuning direction(s), generating cosine tuning functions. Moreover, these findings were robust in biphasic perturbations that initially imposed a perturbation in the sagittal plane and then, before sagittal balance was recovered, perturbed the body in multiple directions. Therefore, biphasic perturbations caused the initial state of the CoM to differ from the desired state, and muscle synergy recruitment was predicted based on the error between the actual and desired upright state of the CoM. These results demonstrate that that temporal motor commands to muscle synergies reflect task-relevant error as opposed to sensory inflow. The proposed hierarchical framework may represent a common principle of motor control across motor tasks and levels of the nervous system, allowing motor intentions to be transformed into motor actions.


Sign in / Sign up

Export Citation Format

Share Document