scholarly journals Localization of the Optic Disc in Retinal Fundus Image using Appearance Based Method andVasculature Convergence

2020 ◽  
pp. 164-170
Author(s):  
Suha Dh. Athab ◽  
Nassir H. Selman

Optic Disc (OD) localization is a basic step for the screening, identification and appreciation of the risk of diverse ophthalmic pathologies such as glaucoma and diabetic retinopathy.In fact, the fundamental step towards an exact OD segmentation process is the success of OD localization. This paper proposes a fully automatic procedure for OD localization based on two of the OD most relevant features  of high-intensity value and vasculature convergence. Merging ofthese two features renders the proposed method capable of localizing the OD within the variously complicated environments such as the faint disc boundary, unbalanced shading, and the existence of retinal pathologies like cotton wall and exudates,which usually share the same color and structure with the OD. To demonstrate the robustness, reliability and broad applicability of the proposed approach,we tested 1614 images from publically available datasets, including Messidor (1200 images), TheStandard Diabetic,Retinopathy Database (DIARETDB0 ,130 images), Digital Retinal,Images for Optic Nerve,Segmentation (DRIONS ,110 images), TheStandard Diabetic,Retinopathy Database (DIARETDB1,89 images),High,Resolution Fundus (HRF,45 images),and Digital,Retinal Image for Vessels,Extraction (DRIVE,40 images). The method successfully localized 1599 images and failed in 15 images, with an average success rate of 99.07% and an average computation time of 0.5 second per image.

Diabetic Retinopathy (DR) is a main source of vision misfortune in diabetic patients. DR is a predominantly caused because of the harm caused in retinal veins of a diabetic patients. It is fundamental to recognize and fragment their tinal veins for DR identification and determination, which avoids prior vision misfortune in diabetic patients. The PC helped programmed discovery and division of veins through the end of optic location district in Retina. Optic Disc (OD) discovery is a principle step while creating computerized screening framework for diabetic retinopathy. This is a technique to naturally recognize the situation of the OD in advanced retinal fundus pictures. The strategy begins by normalizing glow and difference all through the picture utilizing brightening evening out and versatile histogram balance techniques individually. The OD recognition calculation depends on coordinating the normal directional example of the retinal veins. Henceforth, a straightforward coordinated channel is proposed to generally coordinate the headings of the vessels at the OD region. The retinal vessels are portioned utilizing a basic and standard 2-D Gaussian coordinated channel.


Author(s):  
Syna Sreng ◽  
Jun-Ichi Takada ◽  
Noppadol Maneerat ◽  
Don Isarakorn ◽  
Ruttikorn Varakulsiripunth ◽  
...  

2016 ◽  
Vol 10 (2) ◽  
pp. 254-261 ◽  
Author(s):  
Malavika Bhaskaranand ◽  
Chaithanya Ramachandra ◽  
Sandeep Bhat ◽  
Jorge Cuadros ◽  
Muneeswar Gupta Nittala ◽  
...  

2014 ◽  
Vol 14 (3) ◽  
pp. 5494-5499
Author(s):  
Sreeparna Banerjee ◽  
Diptoneel Kayal

Diabetic retinopathy is considered to be one of the major causes of blindness among diabetes mellitus patients. Due to diabetic retinopathy blood vessels of retina gets damaged and fat, lipoprotein substances gets leaked out of the damaged blood vessels and are deposited in the intra retinal space. These substances are viewed as yellowish or whitish in color and are termed as exudates. They are the most important visible sign of the presence of diabetic retinopathy. Exudates are of two types, (a) hard exudates and (b) soft exudates. If the disease is not detected in early stages then it may lead to complete loss of vision to the diabetes patients. Detection of exudates is extremely difficult to detect by visual inspection due to small inner diameter of retina and inadequate lighting conditions. An efficient image analysis program can detect the presence effectively. In this paper we have proposed an automatic method for detection of hard exudates. The proposed method exhibits a sensitivity of 97.60% and specificity of 93% and accuracy of 95.70%.


2015 ◽  
Vol 5 (1) ◽  
pp. 36
Author(s):  
Baha Sen ◽  
Kemal Akyol ◽  
Safak Bayir ◽  
Hilal Kaya

<p>Identifying the position of the optic disc on the retinal fundus image is a technique that is often used in medical diagnosis, treatment and monitoring processes. Determination of the intensity of the bright colors that belongs to the optic disc on a normal retinal image by the help of image processing algorithms is a fairly easy process. However, determining the optic disc on a retinal image including the diabetic retinopathy disease is a more difficult process. The reason for this difficulty is the existence of many regions that have the same light intensity in different parts of the retina. In this study, a new method for supplying the automatic determination of the optic disc in a recursive manner is proposed. By the help of OpenCV library, automatic determination process of the optic disc on the retinal fundus images including the diabetic retinopathy disease, has been implemented. Circular regions with maximum brightness values in the retinal images that were normalized and passed through the denoising process were determined and these regions were analyzed if they are optic disc or not. This process basically consists of two steps: In the first step, the possible optic disc candidate regions were determined recursively and in the second step, by the help of Gabor filter kernels, these regions were analyzed and it’s provided to decide if they are optic disc or not. This study is based on a dataset that has 89 images including diabetic retinopathy disease. Performance of this system is tested on these images and also on the images that the red, green, blue color channels and Contrast Limited Adaptive Histogram Equalization (CLAHE) retinas were obtained. Most accurate determination of the position of the optic disc is obtained with retinas, implemented process CLAHE, including the best success rate of 89.88%.</p><p> </p>Keywords: Optic disc, diabetic retinopathy, recursively, circular region, gabor filter kernels.


The main objective of this method is to detect DR (Diabetic Retinopathy) eye disease using Image Processing techniques. The tool used in this method is MATLAB (R2010a) and it is widely used in image processing. This paper proposes a method for Extraction of Blood Vessels from the medical image of human eye-retinal fundus image that can be used in ophthalmology for detecting DR. This method utilizes an approach of Adaptive Histogram Equalization using CLAHE (Contrast Limited Adaptive Histogram Equalization) algorithm with open CV (Computer Vision) framework implementation. The result shows that affected DR is detected in fundus image and the DR is not detected in the healthy fundus image and 98% of Accuracy can be achieved in the detection of DR.


2019 ◽  
Vol 16 (10) ◽  
pp. 4266-4270
Author(s):  
Meenu Garg ◽  
Sheifali Gupta ◽  
Rakesh Ahuja ◽  
Deepali Gupta

The present study relates to diagnostic devices, and more specifically, to a diabetic retinopathy prediction device, system and method for early prediction of diabetic retinopathy with application of deep learning. The device includes an image capturing device, a memory coupled to processor. The image capturing device obtains a retinal fundus image from the user. The memory comprising executable instructions which upon execution by the processor configures the device to obtain physiological parameters of the user in real-time from the image capturing device, retrieve the obtained retinal fundus image and the one or more obtained physiological parameters and compare the one or more extracted features with at least one pre-stored feature in a database to generate at least a prediction result indicative of detection of the presence, the progression or the treatment effect of the disease in the user.


Sign in / Sign up

Export Citation Format

Share Document