scholarly journals Real-time Ultraviolet Radiation Sensor Based on Modified Cladding Optical Fibers Technology

2021 ◽  
pp. 4667-4673
Author(s):  
Nadia F. Muhammed ◽  
Aseel I. Mahmood ◽  
Shehab A. Kadhim ◽  
Intisar A. Naseef ◽  
Ashwaq A. Jabor ◽  
...  

      In this work, the performance of single-mode optical fibers (SMFs) for ultraviolet (UV) radiation monitoring and dosimetry applications is presented. In particular, this work will focus on the Radiation-Induced Absorption (RIA) phenomena in the Near-Infrared domain (NIR). Such phenomena play a very important role in the sensing mechanism for SMF. Single mode fibers with a diameter of 50 µm were used for this purpose. These fibers were dipped into germanium (Ge) solution with different concentrations (1, 3, and 5 wt%) to produce the sensing part of the sensor. For all optical fiber sensors under investigation, the results indicated the dependence of the RIA on the applied UV radiation energy. Also, a redshift in peak wavelength was obtained. The influence of Ge concentration on sensing efficiency was studied and the best results were obtained with 3 wt% concentration as compared to 1 wt % and 5 wt % concentrations. The presented sensor shows good sensitivity to UV radiation which makes it possible to be applied in medical applications.

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Sukhdev Roy ◽  
Purnima Sethi ◽  
Juraj Topolancik ◽  
Frank Vollmer

We present designs of all-optical reversible gates, namely, Feynman, Toffoli, Peres, and Feynman double gates, with optically controlled microresonators. To demonstrate the applicability, a bacteriorhodopsin protein-coated silica microcavity in contact between two tapered single-mode fibers has been used as an all-optical switch. Low-power control signals (<200 μW) at 532 nm and at 405 nm control the conformational states of the protein to switch a near infrared signal laser beam at 1310 or 1550 nm. This configuration has been used as a template to design four-port tunable resonant coupler logic gates. The proposed designs are general and can be implemented in both fiber-optic and integrated-optic formats and with any other coated photosensitive material. Advantages of directed logic, high Q-factor, tunability, compactness, low-power control signals, high fan-out, and flexibility of cascading switches in 2D/3D architectures to form circuits make the designs promising for practical applications.


2014 ◽  
Author(s):  
B. Singleton ◽  
J. Petrosky ◽  
M. Pochet ◽  
N. G. Usechak ◽  
S. A. Francis

Author(s):  
Patricia Ixchel Palma-Arguello ◽  
Grethell Georgina Pérez-Sánchez ◽  
Fernando Martínez-Piñón ◽  
Genaro Hernández-Valdez

Astronomy has benefited significantly from the development of photonic technology. However, the use of single-mode optical fibers in this area is not entirely efficient, this is mainly since its core, of the order of 8 microns in diameter, does not allow the capture of large amounts of light. In addition, in certain astronomical studies, it is required to analyze the multimodal incoherent light coming from the stars, particularly in the spectral range of the near infrared. One solution to these demands is the use of photonic lanterns, which are devices that function as an interface between a set of single-mode fibers and a multimode fiber, and in whose transition very low optical losses are obtained. However, there is not as far as we know, a mathematical method for the analysis of the behavior of the output power in photonic lanterns. Therefore, in this work we propose a numerical approximation method to determine the optical output power of single mode optical fibers in a photonic lantern, using the solution of eigenvalue equations, as well as the spatial capture of a part of the distribution of optical power, through of the end of a monomode tapered optical fiber.


2020 ◽  
Vol 238 ◽  
pp. 11013
Author(s):  
Pavel Cherpak ◽  
Renat Shaidullin ◽  
Oleg Ryabushkin

We demonstrate a novel approach to the determination of optical loss coefficients in metal-coated fibers in a 0.4-1.9 μm wavelength range. It is based on measuring the change of temperature-dependent electrical resistance of the metal coating caused by laser radiation transmitted through the fiber. A number of single-mode and multimode metallized fibers were investigated using several laser sources operating in visible and near infrared ranges. The spectral dependencies of optical losses of copper-coated fibers were experimentally obtained. The region that corresponds to the minimum optical losses is located near 1 μm wavelength. The increase of radiation losses in 1.5-1.9 μm region is much steeper compared to polymer-coated fibers.


Author(s):  
Amir Ghazanfari ◽  
Wenbin Li ◽  
Ming C. Leu ◽  
Jeremy Watts ◽  
Yiyang Zhuang ◽  
...  

Traditionally, sensors to be integrated into a structural component are attached to or mounted on the component after the component has been fabricated. This tends to result in unsecured sensor attachment and/or serious offset between the sensor reading and the actual status of the structure, leading to performance degradation of the host structure. This paper describes a novel extrusion-based additive manufacturing process that has been developed to enable embedment of sensors in ceramic components during the part fabrication. In this process, an aqueous paste of ceramic particles with a very low amount of binder content (< 1 vol%) is extruded through a moving nozzle to build the part layer-by-layer. In the case of sensor embedment, the fabrication process is halted after a certain number of layers have been deposited. The sensors are placed in their predetermined locations, and the remaining layers are deposited until the part fabrication is completed. Because the sensors are embedded during the fabrication process, they are fully integrated with the part and the aforementioned problems of traditional sensor embedment can be eliminated. The sensors used in this study were made of sapphire optical fibers of 125 and 250 micro-meters diameter and can withstand temperatures up to 1600 °C. After the parts were built, two different drying processes (freeze drying and humid drying) were investigated to dry the parts. The dried parts were then sintered to achieve near theoretical density. Scanning electron microscopy was used to observe the embedded sensors and to detect any possible flaws in the part or embedded sensor. Attenuation of the sensors was measured in near-infrared region (1500–1600 nm wavelength) with a tunable laser source. Raman spectroscopy was performed on the samples to measure the residual stresses caused by shrinkage of the part and its slippage on the fibers during sintering and mismatch between the coefficients of thermal expansion of the fiber and host material. Standard test methods were employed to examine the effect of embedded fibers on the strength and hardness of the parts. The result indicated that the sapphire fiber sensors with diameters smaller than 250 micrometers are able to endure the freeform extrusion fabrication process and also the post-processing without compromising the part properties.


2019 ◽  
Vol 46 (11) ◽  
pp. 340-343 ◽  
Author(s):  
P. F. Kashaykin ◽  
A. L. Tomashuk ◽  
M. Yu. Salgansky ◽  
N. N. Vechkanov ◽  
A. N. Guryanov ◽  
...  

2005 ◽  
Vol 480-481 ◽  
pp. 329-332 ◽  
Author(s):  
Sylvain Girard ◽  
A. Boukenter ◽  
Y. Ouerdane ◽  
J.-P. Meunier

We studied the defects at the origins of the permanent radiation-induced attenuation in four g-rays irradiated single-mode germanosilicate optical fibers (~1 MeV; 1.2 kGy; 0.3 Gy/s) in the spectral range 400 - 1700 nm. We determined the wavelength dependence of the following cladding codopant influences: germanium (0.3 %), phosphorus (0.3 %), fluorine (0.3 %) on the germanosilicate (13 %) fiber radiation responses. We identified some of the different color centers produced by g-rays and we evaluated their localization in the fiber cross-section through the determination of the radial distribution of the radiation-induced absorption at 633 nm. We also evidenced the strong interactions between these three codopants. In particular, our results showed that the properties of the phosphorus-related color centers, which mainly determine the fiber infrared radiation sensitivity, are strongly influenced by the germanium- and fluorine-codoping.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2717 ◽  
Author(s):  
Jeroen Missinne ◽  
Nuria Teigell Benéitez ◽  
Marie-Aline Mattelin ◽  
Alfredo Lamberti ◽  
Geert Luyckx ◽  
...  

Thin and flexible sensor foils are very suitable for unobtrusive integration with mechanical structures and allow monitoring for example strain and temperature while minimally interfering with the operation of those structures. Electrical strain gages have long been used for this purpose, but optical strain sensors based on Bragg gratings are gaining importance because of their improved accuracy, insusceptibility to electromagnetic interference, and multiplexing capability, thereby drastically reducing the amount of interconnection cables required. This paper reports on thin polymer sensor foils that can be used as photonic strain gage or temperature sensors, using several Bragg grating sensors multiplexed in a single polymer waveguide. Compared to commercially available optical fibers with Bragg grating sensors, our planar approach allows fabricating multiple, closely spaced sensors in well-defined directions in the same plane realizing photonic strain gage rosettes. While most of the reported Bragg grating sensors operate around a wavelength of 1550 nm, the sensors in the current paper operate around a wavelength of 850 nm, where the material losses are the lowest. This was accomplished by imprinting gratings with pitches 280 nm, 285 nm, and 290 nm at the core-cladding interface of an imprinted single mode waveguide with cross-sectional dimensions 3 × 3 µm2. We show that it is possible to realize high-quality imprinted single mode waveguides, with gratings, having only a very thin residual layer which is important to limit bend losses or cross-talk with neighboring waveguides. The strain and temperature sensitivity of the Bragg grating sensors was found to be 0.85 pm/µε and −150 pm/°C, respectively. These values correspond well with those of previously reported sensors based on the same materials but operating around 1550 nm, taking into account that sensitivity scales with the wavelength.


Sign in / Sign up

Export Citation Format

Share Document