scholarly journals Formulation and Evaluation of Solid Dispersion Incorporated Fast Disintegrating Tablets of Tenoxicam Using Design of Experiment

Author(s):  
Hafsa Mohammadi ◽  
V Hemanath Kumar

The aim of the present work is to develop fast dissolving tablets from the solid dispersion of Tenoxicam for enhancement of solubility. The solid dispersions of Tenoxicam were prepared with Kollidon CL, PVP K30 and Poloxamer 127, in 1:1:1, 1:2:1 and 1:3:1 by using solvent evaporation method. The prepared solid dispersions were analyzed for all the physical parameters, drug: carrier interactions like FTIR, SEM, XRD. Solid dispersions showed a better dissolution compared to the pure drugs and among all the other formulations SD9 shows high percentage drug release i.e. 99.11 ± 5.17% for 90 min and selected as an optimized formulation for the preparation of fast disintegrating tablets of Tenoxicam. Gellan Gum, Fenugreek Seed Mucilage and L-HPC (low, middle and high concentrations) used in the preparation of fast disintegrating tablets prepared by direct compression method using 33 Response surface method. The post compression parameters of all the prepared tablets were within the limits. TF13 was selected as optimized formulation based on its highest disintegration time 36 sec and drug release 99.68 ± 1.52% for 10 min. Drug-excipients characterization also revealed that there is no interaction. Hence it concluded that solid dispersions incorporated fast disintegrating tablets is very useful approach for immediate release of Tenoxicam in the efficient management of inflammation and pain.

Author(s):  
Bhikshapathi D. V. R. N. ◽  
Vishwa M

Rilpivirine benzonitrile is a pharmaceutical drug used for the treatment of HIV infection it is characterized with poor solubility that limits its absorption and dissolution rate, which delays onset of action. In the present study, immediate release solid dispersion of antiretroviral Rilpivirine was formulated by solvent evaporation technique. Eighteen solid dispersions were prepared with 1:1:1, 1:2:1 and 1:3:1 ratios of drug: carrier: surfactant. There was significant improvement in the rate of drug release from all 18 solid dispersions and the formulation (SE12) comprising Rilpivirine: Kolliwax GMS II: SLS in 1:3:1 by solvent evaporation process has shown enhanced solubility about 30 folds and significant improvement in the rate of drug release. From powder X-ray diffraction (p-XRD) and by scanning electron microscopy (SEM) studies it was evident that polymorphic form of Rilpivirine has been converted into an amorphous form from crystalline within the solid dispersion formulation. The obtained results suggested that developed solid dispersion by solvent evaporation method might be an efficacious approach for enhancing the solubility and dissolution rate of Rilpivirine.   


2020 ◽  
Vol 19 (9) ◽  
pp. 1797-1805
Author(s):  
Nayyer Islam ◽  
Muhammad Irfan ◽  
Nasir Abbas ◽  
Haroon Khalid Syed ◽  
Muhammad Shahid Iqbal ◽  
...  

Purpose: To investigate the efficiency of different solubilizing agents in improving solubility as well as dissolution rate of ebastine (a BCS class II drug) by incorporating prepared solid dispersion into fast disintegrating tablets.Method: The solubility of ebastine was determined in distilled water, lipids and solubilizing agents. Subsequently, the binary solid dispersions were prepared by kneading method using varying weight ratios of ebastine and solubilizing agents. The solid dispersions were then incorporated into fast disintegrating tablets (SD-FDT). Central composite rotatable design (CCD) was used to determine the impact of super disintegrating agents on disintegration time and friability of tablets. The solubility and dissolution rate of developed SD-FDT were compared with a marketed brand. The solid dispersion particles were characterized by Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), powder x-ray diffraction (P-XRD) and scanning electron microscopy (SEM).Results: The saturated solubility of pure ebastine in water was 0.002 ± 0.041 mg/ml while the aqueous solubility of EBT/poloxamer solid dispersion SET3 (P) was 0.018 ± 2.510 mg/ml; on the other hand, EBT/soluplus solid dispersion SET1(S) has an aqueous solubility of 0.242 ± 1.390 mg/ml. Within 30 min, drug release was 14.00 ± 1.77, 78.00 ± 2.31 and 98.70 ± 2.54 % from pure EBT, SET3 (P) and SET1(S), respectively.Conclusion: The solubility and dissolution rate of ebastine has been successfully enhanced by incorporating its solid dispersion in fast-disintegrating tablets (SD-FDT). Keywords: Ebastine, Solid dispersion, Poloxamer 188, Soluplus, Solubility, Dissolution


Author(s):  
MAHAPARALE PR ◽  
THORAT VP

Objective: Leflunomide is Non steroidal Anti-Inflammatory drug, which is poorly water soluble. In present study attempt has been made to prepare and characterize solid dispersions of leflunomide to increase solubility of drug.Method:  In Preparation of solid dispersion of leflunomide different polymer like PEG 4000, PEG 6000, Poloxamer 188 and Poloxamer 407 were used.  Effects of several variables such as type of carrier used, drug: carrier ratios, method of preparation were studied. The evaluation of solid dispersions was done by solubility study, dissolution study and X-ray diffractometry. Result: Improvement in dissolution of drug was observed in all solid dispersions as compared to pure drug alone. Solid dispersions prepared using Poloxamer 188 showed fastest in vitro drug release. Solid dispersions prepared using solvent evaporation method showed relatively faster drug release than melt evaporation method. XRD patterns indicated reduced crystallinity of drug particles, which suggests mechanism of enhanced solubility and dissolution of drug in solid dispersion systems.Conclusion:  A significant result obtained with the study indicated that solid dispersion by solvent evaporation can successfully be further explored and employed to improve solubility and dissolution characteristics of poorly soluble drugs.Keywords: Leflunomide, Solid dispersion, Carrier


Author(s):  
SANDEEP DOPPALAPUDI ◽  
VIDYADHARA SURYADEVARA

Objective: The objective of the current study is to improve the solubility of the Biopharmaceutical Classification System (BCS) Class-II drug, Metolazone, using various superdisintegrants. Methods: Starches were extracted from Sterculia foetida seed powder by water and alkali techniques i.e., sodium hydroxide at 0.1%, 0.25% and 0.5% concentrations. Several phytochemical and physicochemical parameters were evaluated on the extracted starches. Solid dispersions of Metolazone were prepared by the solvent evaporation technique using plasdone K-29/32 alone and by mixing plasdone K-29/32 with Sterculia foetida seed starch. Various physical parameters were evaluated for the prepared solid dispersions. Tablets were prepared using Metolazone solid dispersions and varying concentrations of Sterculia foetida seed starch by direct compression technique. Pre and post-compression parameters were evaluated along with in vitro drug release studies, characterization using Scanning Electron Microscopy (SEM) and stability studies. Results: Phytochemical tests showed the presence of starch in all extracts. Starch prepared from 0.1% sodium hydroxide (SFS2) showed best physicochemical properties. In vitro dissolution studies revealed that solid dispersion MS4 containing Metolazone and plasdone K-29/32 in 1:3 ratios showed better drug release. Formulation MPT6 containing MS5 solid dispersion with 15% w/w of SFS2 showed enhanced drug release. SEM studies revealed no major interactions between drugs and excipients. Accelerated stability studies showed that all tablets were stable. Conclusion: Sterculia foetida seed starch and plasdone K-29/32 have enhanced the solubility of Metolazone.


Author(s):  
Hafsa Mohammadi ◽  
Hemanath Kumar V ◽  
Roshan S ◽  
Bhikshapathi D. V. R. N.

Lornoxicam is a nonsteroidal anti-inflammatory drug (NSAID) of the oxicam class. It belongs to BCS class II substance with low solubility and high permeability. The aim of current research is to formulate solid dispersion incorporated Fast disintegrating tablets of Lornoxicam to enhance the dissolution rate and aqueous solubility and to enable faster onset of action. Solid dispersions are prepared with polymers like Kolliwax GMS, Soluplus and HPMC in three different ratios 1:1:1, 1:2:1 and 1:3:1. Formulations were characterized for drug content studies, drug release studies, and drug-polymer interactions using Fourier transform infrared spectroscopy (FTIR) spectrum. The solid dispersions can be evaluated by in-vitro dissolution studies. The optimized solid dispersion SD9 was further used to prepare fast disintegrating tablet by direct compression method using 33 Response surface method (3 variables and 3 levels of superdisintegrants) by using Design of experiment software with superdisintegrants like locust bean gum, gum karaya, Plantago ovata. The values of pre-compression parameters evaluated were within prescribed limits that indicated good free flowing properties. The data obtained of post-compression parameters such as weight variation, hardness, friability, content uniformity, disintegration time (33 sec) and percentage drug release was maximum in LF24 (99.21±1.87%) within 10 minutes and was found to superior over Marketed formulation i.e., 87.27±0.27 %. From in vivo bioavailability studies the best formulation has shown Tmax of 1.0 h which was highly significant (P < 0.05) when compared with marketed formulation 2.5 h. The statistical significance was assessed by one-way analysis of variance. Therefore, the solid dispersions incorporated fast disintegrating tablets of Lornoxicam can be successfully used for improvement of dissolution, resulted in faster onset of action as indicated by in vivo studies. It can be concluded that fast disintegrating tablets using Lornoxicam solid dispersion could be used to improve better patient compliance with immediate action in the effective management of pain and inflammation.


Author(s):  
A. Laxmi Raj ◽  
Y. Shravan Kumar

Nebivolol is a pharmaceutical drug used for the treatment of Hypertension. It is characterized with poor solubility which limits its absorption and dissolution rate which delays onset of action. In the present study, fifteen formulations of solid dispersions were prepared with 1:1:1, 1:5:2 and 1:3:1.5 ratios of drug: carrier: surfactant by solvent evaporation method. There was significant improvement in the rate of drug release from all 15 solid dispersions and the formulation (SD14) comprising Nebivolol: Kleptose HPB: SLS in 1:5:2 ratio has shown enhanced solubility about 42 folds and significant improvement in the rate of drug release i.e. From powder X-ray diffraction (p-XRD) and by scanning electron microscopy (SEM) studies it was evident that polymorphic form of Nebivolol has been converted into an amorphous form from crystalline within the solid dispersion formulation. The present study demonstrated that formulation of Nebivolol solid dispersion is a highly effective strategy for enhancing the bioavailability of poorly water soluble drug Nebivolol.


Author(s):  
Suchitra Kaushik ◽  
Kamla Pathak

The aim of the present work was to develop immediate release dosage form of the solid dispersion of glimperide (GLIM) for potential enhancement in the bioavailability. The solid dispersions of GLIM were prepared with PEG6000, PVP K30 and Poloxamer 188, in 1:1, 1:3 and 1:5 %w/w ratio by using solvent wetting and solvent melt method. The in vitro dissolution parameters (%DE10min, %DE30min, %DE60min, T50% and DP30) were used to select the optimized solid dispersion that was characterized by IR, PXRD, DSC and SEM. The optimized solid dispersion of GLIM (GSDSM3) was used as drug component for immediate release (IR) tablets that were evaluated for physical and pharmacopoeial parameters. The in vitro drug release studies identified G4 as the optimized tablet with a cumulative drug release (CDR) of 99.34% in 30 min in phosphate buffer, pH 7.4. The CDR was higher than the marketed tablet (91.15%, Amaryl®, Sanofiaventis), However, the f1 and f2 were 10.6 and 52 respectively, which confirmed similarity of the dissolution profile(s). Accelerated stability studies confirmed stability up to 6 months at 40°C/75% condition in the HDPE bottle pack.


Author(s):  
SANDEEP DOPPALAPUDI ◽  
VIDYADHARA SURYADEVARA ◽  
CHIRUDEEP JUJALA

Objective: The present study focused on solubility enhancement of the Biopharmaceutical Classification System (BCS) Class-II drug, Febuxostat using various super disintegrants. Methods: Starches were extracted from Entada scandens seed powder by alkali method i.e., sodium hydroxide at 0.1%, 0.25% and 0.5% concentrations and water. Starches were evaluated for various phytochemical and physicochemical tests. Solid dispersions of Febuxostat were prepared by fusion method using poloxamer-188 alone and by mixing poloxamer-188 with Entada scandens seed starch. Various physical parameters were evaluated for these solid dispersions. Tablets were prepared using Febuxostat solid dispersions and varying concentrations of Entada scandens seed starch by direct compression technique. Pre and post-compression parameters were evaluated along with in vitro drug release studies, characterization studies like Fourier Transform Infra-Red spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and stability studies. Results: Phytochemical tests revealed the presence of starch in all extracts. Starch prepared from 0.5% sodium hydroxide (ESS4) showed best physicochemical properties. In vitro dissolution studies revealed that solid dispersion F4 containing Febuxostat and poloxamer-188 in 1:3 ratios showed better drug release. Formulation FE5 containing F4 solid dispersion with 12.5% w/w of ESS4 showed enhanced drug release. FT2 tablets having 12.5% w/w of ESS4 showed better drug release when compared to others. FTIR and DSC studies revealed no major interactions between drug and excipients. XRD studies revealed the nature of formulations. Accelerated stability studies showed that all tablets were stable. Conclusion: The super disintegrant property of Entada scandens seed starch was evaluated.


Author(s):  
Deshkar S. S. ◽  
Pore A. R.

Platelets play an important role in hemostasis during tissue injury, which blocks the defect and terminates blood loss. Platelet aggregation inhibitors are widely used in treatment of cardiovascular disorders and Peripheral arterial disease. Clopidogrel bisulphate and Cilostazol, are FDA approved BCS class II drugs, used in treatment of Platelet aggregation, peripheral arterial disease and intermittent claudication. The aim of the present study was to develop an immediate release pellets for combination of Clopidogrel bisulphate and Cilostazol using extrusion spheronization technique. The effects of spheronization speed(X1) and binder concentration (PVP K30) (X2), on size of pellets, disintegration time and drug release were studied using 32 full factorial design. The surface response and counter plot were drawn to facilitate an understanding of the contribution of the variables and their interaction. From the results, speed of spheronization of 1100 rpm and 5% concentration of PVP K30, were selected. In vitro drug release studies revealed more than 80% of clopidogrel bisulphate release and more than 75% of cilostazol release within 30 min of dissolution which complied with the pharmacopoeal limits. Film coated pellets did not show significant change in the drug release. DSC and FTIR studies revealed no interaction of drugs and excipient during pellet formulation. The pellet formulations of clopidogrel and cilostazol were found to be stable when stored at 40ºC±2ºC/ 75%RH±5%RH for 2 months. Conclusively, clopidogrel bisulphate and cilostazol pellet fixed dose combination could be successfully developed by design of experimentation and complied with pharmacopoeal limits.


2021 ◽  
Vol 14 (2) ◽  
pp. 132
Author(s):  
Siriporn Okonogi ◽  
Adchareeya Kaewpinta ◽  
Sakornrat Khongkhunthian ◽  
Pisaisit Chaijareenont

Burst release of carbamide peroxide (CP) from traditional hydrogels causes severe inflammation to periodontal tissues. The present study explores the development of a novel CP nanoemulgel (CP-NG), an oil-in-water nanoemulsion-based gel in which CP was loaded with a view to controlling CP release. CP solid dispersions were prepared, using white soft paraffin or polyvinylpyrrolidone-white soft paraffin mixture as a carrier, prior to formulating nanoemulsions. It was found that carrier type and the ratio of CP to carrier affected drug crystallinity. Nanoemulsions formulated from the optimized CP solid dispersions were used to prepare CP-NG. It was found that the ratio of drug to carrier in CP solid dispersions affected the particle size and zeta potential of the nanoemulsions as well as drug release behavior and tooth bleaching efficacy of CP-NG. Drug release from CP-NG followed a first-order kinetic reaction and the release mechanism was an anomalous transport. Drug release rate decreased with an increase in solid dispersion carriers. CP-NG obtained from the solid dispersion with a 1:1 ratio of CP to the polymer mixture is suitable for sustaining drug release with high tooth bleaching efficacy and without reduction of enamel microhardness. The developed CP-NG is a promising potential tooth bleaching formulation.


Sign in / Sign up

Export Citation Format

Share Document