scholarly journals Analysis of Grid Events Influenced by Different Levels of Renewable Integration on Extra-large Power Systems

2021 ◽  
Vol 6 (5) ◽  
pp. 43-52
Author(s):  
Christoph Rüeger ◽  
Jean Dobrowolski ◽  
Petr Korba ◽  
Felix Rafael Segundo Sevilla
2019 ◽  
Vol 11 (16) ◽  
pp. 4424 ◽  
Author(s):  
Chunning Na ◽  
Huan Pan ◽  
Yuhong Zhu ◽  
Jiahai Yuan ◽  
Lixia Ding ◽  
...  

At present time, China’s power systems face significant challenges in integrating large-scale renewable energy and reducing the curtailed renewable energy. In order to avoid the curtailment of renewable energy, the power systems need significant flexibility requirements in China. In regions where coal is still heavily relied upon for generating electricity, the flexible operations of coal power units will be the most feasible option to face these challenges. The study first focused on the reasons why the flexible operation of existing coal power units would potentially promote the integration of renewable energy in China and then reviewed the impacts on the performance levels of the units. A simple flexibility operation model was constructed to estimate the integration potential with the existing coal power units under several different scenarios. This study’s simulation results revealed that the existing retrofitted coal power units could provide flexibility in the promotion of the integration of renewable energy in a certain extent. However, the integration potential increment of 20% of the rated power for the coal power units was found to be lower than that of 30% of the rated power. Therefore, by considering the performance impacts of the coal power units with low performances in load operations, it was considered to not be economical for those units to operate at lower than 30% of the rated power. It was believed that once the capacity share of the renewable energy had achieved a continuously growing trend, the existing coal power units would fail to meet the flexibility requirements. Therefore, it was recommended in this study that other flexible resources should be deployed in the power systems for the purpose of reducing the curtailment of renewable energy. Furthermore, based on this study’s obtained evidence, in order to realize a power system with high proportions of renewable energy, China should strive to establish a power system with adequate flexible resources in the future.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4466
Author(s):  
Maël Riou ◽  
Florian Dupriez-Robin ◽  
Dominique Grondin ◽  
Christophe Le Loup ◽  
Michel Benne ◽  
...  

Microgrids operating on renewable energy resources have potential for powering rural areas located far from existing grid infrastructures. These small power systems typically host a hybrid energy system of diverse architecture and size. An effective integration of renewable energies resources requires careful design. Sizing methodologies often lack the consideration for reliability and this aspect is limited to power adequacy. There exists an inherent trade-off between renewable integration, cost, and reliability. To bridge this gap, a sizing methodology has been developed to perform multi-objective optimization, considering the three design objectives mentioned above. This method is based on the non-dominated sorting genetic algorithm (NSGA-II) that returns the set of optimal solutions under all objectives. This method aims to identify the trade-offs between renewable integration, reliability, and cost allowing to choose the adequate architecture and sizing accordingly. As a case study, we consider an autonomous microgrid, currently being installed in a rural area in Mali. The results show that increasing system reliability can be done at the least cost if carried out in the initial design stage.


2001 ◽  
Vol 16 (4) ◽  
pp. 776-781
Author(s):  
Fan Li ◽  
Baohua Li ◽  
Xujun Zheng

2019 ◽  
Vol 70 (6) ◽  
pp. 454-464
Author(s):  
Omar Benmiloud ◽  
Salem Arif

Abstract Dynamic equivalent (DE) is an important process of multi-area interconnected power systems. It allows to perform stability assessment of a specific area (area of interest) at minimum cost. This study is intended to investigate the dynamic equivalent of two relatively large power systems. The fourth-order model of synchronous generators with a simplified excitation system is used as equivalent to the group of generators in the external system. To improve the accuracy of the estimated model, the identification is carried in two stages. First, using the global search Sine Cosine Algorithm (SCA) to find a starting set values, then this set is used as starting point for the fine-tuning made through the Pattern Search (PS) algorithm. To increase the reliability of the model’s parameters, two disturbances are used to avoid the identification based on a specific event. The developed program is applied on two standard power systems, namely, the New England (NE) system and the Northeast Power Coordinating Council (NPCC) system. Simulation results confirm the ability of the optimized model to preserve the main dynamic properties of the original system with accuracy.


2021 ◽  
Author(s):  
Diana Cantor ◽  
Andrés Ochoa ◽  
Oscar Mesa

Complementarity has become an essential concept in energy supply systems. Although there are some other metrics, most studies use correlation coefficients to quantify complementarity. The standard interpretation is that a high negative correlation indicates a high degree of complementarity. However, we show that the correlation is not an entirely satisfactory measure of complementarity. As an alternative, we propose a new index based on the mathematical concept of the total variation. For two time series, the new index φ is one minus the ratio of the total variation of the sum to the sum of the two series' total variation. We apply the index first to an auto-regressive (AR) process and then to various Colombian electric system series. The AR case clearly illustrates the limitations of the correlation coefficient as a measure of complementarity. We then evaluate complementarity across various space-time scales in the Colombian power sectors, considering hydro and wind projects. The complementarity assessment on a broad temporal and geographical scale helps analyze large power systems with different energy sources. The case study of the Colombian hydropower systems suggests that φ is better than ρ because (i) it considers scale, whereas ρ, being non-dimensional, is insensitive to the scale and even to the physical dimensions of the variables; (ii) one can apply φ to more than two resources; and (iii) ρ tends to overestimate complementarity.


Sign in / Sign up

Export Citation Format

Share Document