scholarly journals Investigation of Magneto-phonon Resonance in Graphene Monolayers

Author(s):  
Bui Dinh Hoi

In this work, utilising the linear response theory we calculate the magneto conductivity (MC) in graphene monolayers, subjected to a static perpendicular magnetic field. The interaction of Dirac fermions with optical phonon via deformation potential is taken into account at high temperature. The dependence of the MC on the magnetic field shows resonant peaks that describe transitions of electrons between Landau levels via the resonant scattering with optical phonons. The effect of temperature on the MC is also obtained and discussed.

2007 ◽  
Vol 21 (08n09) ◽  
pp. 1145-1154 ◽  
Author(s):  
M. L. SADOWSKI ◽  
G. MARTINEZ ◽  
M. POTEMSKI ◽  
C. BERGER ◽  
W. A. DE HEER

We present a far infrared investigation of the optical transitions in epitaxial graphene subjected to a perpendicular magnetic field. Cyclotron-resonance-like transitions between adjacent electron Landau levels are observed, as well as interband transitions. The results are discussed in terms of existing theoretical models of Dirac fermions in graphene, and the relevant optical selection rules.


Author(s):  
G. Gulyamov ◽  
U. I. Erkaboev ◽  
A. G. Gulyamov

The article considers the oscillations of interband magneto-optical absorption in semiconductors with the Kane dispersion law. We have compared the changes in oscillations of the joint density of states with respect to the photon energy for different Landau levels in parabolic and non-parabolic zones. An analytical expression is obtained for the oscillation of the combined density of states in narrow-gap semiconductors. We have calculated the dependence of the maximum photon energy on the magnetic field at different temperatures. A theoretical study of the band structure showed that the magnetoabsorption oscillations decrease with an increase in temperature, and the photon energies nonlinearly depend on a strong magnetic field. The article proposes a simple method for calculating the oscillation of joint density of states in a quantizing magnetic field with the non-quadratic dispersion law. The temperature dependence of the oscillations joint density of states in semiconductors with non-parabolic dispersion law is obtained. Moreover, the article studies the temperature dependence of the band gap in a strong magnetic field with the non-quadratic dispersion law. The method is applied to the research of the magnetic absorption in narrow-gap semiconductors with nonparabolic dispersion law. It is shown that as the temperature increases, Landau levels are washed away due to thermal broadening and density of states turns into a density of states without a magnetic field. Using the mathematical model, the temperature dependence of the density distribution of energy states in strong magnetic fields is considered. It is shown that the continuous spectrum of the density of states, measured at the temperature of liquid nitrogen, at low temperatures turns into discrete Landau levels. Mathematical modeling of processes using experimental values of the continuous spectrum of the density of states makes it possible to calculate discrete Landau levels. We have created the three-dimensional fan chart of magneto optical oscillations of semiconductors with considering for the joint density of energy states. For a nonquadratic dispersion law, the maximum frequency of the absorbed light and the width of the forbidden band are shown to depend nonlinearly on the magnetic field. Modeling the temperature  dependence allowed us to determine the Landau levels in semiconductors in a wide temperature spectrum. Using the proposed model, the experimental results obtained for narrow-gap semiconductors are analyzed. The theoretical results are compared with experimental results.


2019 ◽  
Vol 622 ◽  
pp. A61 ◽  
Author(s):  
R. Staubert ◽  
J. Trümper ◽  
E. Kendziorra ◽  
D. Klochkov ◽  
K. Postnov ◽  
...  

Cyclotron lines, also called cyclotron resonant scattering features are spectral features, generally appearing in absorption, in the X-ray spectra of objects containing highly magnetized neutron stars, allowing the direct measurement of the magnetic field strength in these objects. Cyclotron features are thought to be due to resonant scattering of photons by electrons in the strong magnetic fields. The main content of this contribution focusses on electron cyclotron lines as found in accreting X-ray binary pulsars (XRBP) with magnetic fields on the order of several 1012Gauss. Also, possible proton cyclotron lines from single neutron stars with even stronger magnetic fields are briefly discussed. With regard to electron cyclotron lines, we present an updated list of XRBPs that show evidence of such absorption lines. The first such line was discovered in a 1976 balloon observation of the accreting binary pulsar Hercules X-1, it is considered to be the first direct measurement of the magnetic field of a neutron star. As of today (end 2018), we list 35 XRBPs showing evidence of one ore more electron cyclotron absorption line(s). A few have been measured only once and must be confirmed (several more objects are listed as candidates). In addition to the Tables of objects, we summarize the evidence of variability of the cyclotron line as a function of various parameters (especially pulse phase, luminosity and time), and add a discussion of the different observed phenomena and associated attempts of theoretical modeling. We also discuss our understanding of the underlying physics of accretion onto highly magnetized neutron stars. For proton cyclotron lines, we present tables with seven neutron stars and discuss their nature and the physics in these objects.


2015 ◽  
Vol 29 (23) ◽  
pp. 1550127 ◽  
Author(s):  
R. Khordad

In this paper, the specific heat, entropy and magnetic susceptibility of an asymmetric GaAs quantum dot (QD) are studied under the influence of temperature and a tilted external magnetic field. We first calculate the analytical wave functions and energy levels using a transformation to simplify the Hamiltonian of the system. Then, we obtain the analytical expressions for specific heat, entropy and magnetic susceptibility as the function of temperature, magnetic field and its direction for various anisotropy of the system. According to the results obtained from the present work, we find that (i) the specific heat and entropy are decreased when the magnetic field increases. (ii) When anisotropy is increased, the specific heat and entropy decrease. (iii) At large magnetic fields, the anisotropy has not important effect on specific heat and entropy. In briefly, the magnetic field, magnetic field direction and anisotropy play important roles in the specific heat, entropy and magnetic susceptibility of an asymmetric QD.


Oscillations in the magnetic field dependence of interband Faraday rotation in degenerate samples of InSb and PbTe at low temperatures have been observed for photons having a wide range of energies which are less than that corresponding to the forbidden energy gap. These oscillations are attributed to the imbalance of contributions from right and left circularly polarized modes to the total rotation, caused by the blocking of certain interband absorptions by conduction-band electrons. The perturbing effect of the variation of carrier concentration is used as an experimental variable. The relative strengths of the oscillations have been reasonably well accounted for by analysis of the interband selection rules and transition strengths given by a theory due to Boswarva & Lidiard. The positions of the oscillations, which depend on the population of Landau levels in the conduction band, have a reciprocal magnetic field dependence as for the de Haas-van Alphen effect, and have yielded quantitative determinations of energy-band parameters.


2007 ◽  
Vol 21 (28) ◽  
pp. 1885-1893 ◽  
Author(s):  
L. REN

For a two-dimensional electron gas with equal Rashba and Dresselhaus spin-orbit coupling strength (ReD model), and the Dresselhaus [110] model, the influence of an external magnetic field on the lifetime of the Spin Helix (SH) has been considered. A perpendicular magnetic field has no influence on the lifetime of the SH for the Dresselhaus [110] model, independent of the strength of the magnetic field. But for the ReD model, when the magnetic field is weak, and we only take the linear term of the magnetic field B into account, the conclusion is still so. In addition, if the external magnetic field is in-plane with a suitable angle between the x and y component, the lifetime of the SH will also be infinite.


2002 ◽  
Vol 9 (2) ◽  
pp. 139-147 ◽  
Author(s):  
T. Wiegelmann ◽  
J. Büchner

Abstract. We investigate the evolution of magnetic helicity under kinetic magnetic reconnection in thin current sheets. We use Harris sheet equilibria and superimpose an external magnetic guide field. Consequently, the classical 2D magnetic neutral line becomes a field line here, causing a B ≠ 0 reconnection. While without a guide field, the Hall effect leads to a quadrupolar structure in the perpendicular magnetic field and the helicity density, this effect vanishes in the B ≠ 0 reconnection. The reason is that electrons are magnetized in the guide field and the Hall current does not occur. While a B = 0 reconnection leads just to a bending of the field lines in the reconnection area, thus conserving the helicity, the initial helicity is reduced for a B ≠ 0 reconnection. The helicity reduction is, however, slower than the magnetic field dissipation. The simulations have been carried out by the numerical integration of the Vlasov-equation.


Crystals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 212 ◽  
Author(s):  
Takehiro Tani ◽  
Naoya Tajima ◽  
Akito Kobayashi

The effect of the Coulomb interaction in interlayer magnetoresistance is elucidated in collaboration with theory and experiments for the Dirac electron system in organic conductor α -(BEDT-TTF) 2 I 3 under a strong magnetic field. It is found that the effective g-factor enhanced by Coulomb interaction depends on the angle of the magnetic field, resulting in the field-angle dependence of a characteristic magnetic field in which interlayer resistance has a minimum due to spin splitting N = 0 Landau levels. The qualitative agreement between the theory and experimental results for the field-angle dependence of interlayer magnetoresistance is obtained.


Sign in / Sign up

Export Citation Format

Share Document