scholarly journals RAMAN SPECTROSCOPY OF CaCu3Ti4O12 CERAMICS REVISITED

Author(s):  
Nhat Hoang Nam

The CaCu3Ti4O12 ceramic has been prepared by Solid State Reaction method in excess oxygen. It possesses a well-defined double-perovskite type crystalline structure and exhibits a colossal dielectric constant at around 50000 at room temperature. This paper revised the imprints of Raman spectroscopy of this compound to validate its structural characteristics and optical behaviors. A special attention is paid on the account of optical phonons which show a recognizable agreement with the other results recently reported

2006 ◽  
Vol 45 ◽  
pp. 2572-2575 ◽  
Author(s):  
Yue Jin Shan ◽  
Yoko Kanai ◽  
Keitaro Tezuka ◽  
Hideo Imoto

Ordered perovskite-type oxides, Ca2MTeO6 (M = Mn, Co, Mg), were synthesized by a solid-state reaction method. All of samples belonged to space group P21/n and were insulators at room temperature. However, their electronic conductivities tended large gradually with a rise of temperature. Ca2MnTeO6 and Ca2CoTeO6 showed anti-ferromagnetism, and their Neel temperatures were 10 K and 7 K, respectively. The effective magnetic moment of manganese ion was 5.8 μB while its valence was bivalence in Ca2MnTeO6.


2021 ◽  
Author(s):  
Hang Yu ◽  
Wenwen Bu ◽  
Zijia Wang ◽  
Zhuoyue Zhao ◽  
Mehwish Jadoon ◽  
...  

Polyoxometalate nanoparticles were synthesized via a concise solid-state reaction method by directly grinding silver nitrate and the polyoxometalate (NH4)5H6PMo4V8O40 at room temperature without the assistance of a surfactant.


2016 ◽  
Vol 10 (3) ◽  
pp. 183-188 ◽  
Author(s):  
Mohamed Afqir ◽  
Amina Tachafine ◽  
Didier Fasquelle ◽  
Mohamed Elaatmani ◽  
Jean-Claude Carru ◽  
...  

SrBi1.8Ce0.2Nb2O9 (SBCN) and SrBi1.8Ce0.2Ta2O9 (SBCT) powders were prepared via solid-state reaction method. X-ray diffraction analysis reveals that the SBCN and SBCT powders have the single phase orthorhom-bic Aurivillius structure at room temperature. The contribution of Raman scattering and FTIR spectroscopy of these samples were relatively smooth and resemble each other. The calcined powders were uniaxially pressed and sintered at 1250?C for 8 h to obtaine dense ceramics. Dielectric constant, loss tangent and AC conductivity of the sintered Ce-doped SrBi2Nb2O9 and SrBi2Ta2O9 ceramics were measured by LCR meter. The Ce-doped SBN (SBCN) ceramics have a higher Curie temperature (TC) and dielectric constant at TC (380?C and ?? ~3510) compared to the Ce-doped SBT (SBCT) ceramics (330?C and ?? ~115) when measured at 100Hz. However, the Ce-doped SBT (SBCT) ceramics have lower conductivity and dielectric loss.


2019 ◽  
Vol 891 ◽  
pp. 224-229
Author(s):  
Naphat Albutt ◽  
Vanussanun Aitviriyaphan ◽  
Thanapong Sareein ◽  
Sudarath Suntaropas ◽  
Panakamon Thonglor ◽  
...  

The magnetic properties of Ba2FeMoO6 (BFMO) double perovskite are investigated. BFMO samples were prepared by solid state reaction method through compression. Magnetic properties are influenced by electron environments of the Fe3+ and Mo5+ ions within the perovskite structure. BFMO sintered at 800 oC exhibited the largest hysteresis loop at 50 K. In addition, the values of Ms and Mr indicate ferromagnetic behaviour in BFMO ceramics sintered at 800 oC for different times up to 10 hours. Using the Curie-Weiss law fitting to investigate μeff~30μB high spin of Fe and Mo, and negative θ present the antiferromagnetic characteristics of the BFMO sample.


2011 ◽  
Vol 324 ◽  
pp. 298-301 ◽  
Author(s):  
Roy Jean Roukos ◽  
Olivier Bidault ◽  
Julien Pansiot ◽  
Ludivine Minier ◽  
Lucien Saviot

Lead free Na0.5Bi0.5TiO3 (NBT) and (Na0.5Bi0.5TiO3)1-x(CaTiO3)x (NBT-CT) piezoelectric ceramics with the perovskite structure were studied. The NBT and NBT-CT samples were synthesized using a solid-state reaction method and characterized with X-ray diffraction (XRD), Raman spectroscopy and dielectric measurements for several compositions (x = 0, 0.07, 0.15) at room temperature. The XRD analysis showed a stabilization of a rhombohedral phase at a low concentration of Ca (0 < x <0.15), whereas Raman spectra reveal a strong modification for the sample with x = 0.15. The dielectric properties of these ceramics were studied by measuring impedance in the 79-451K temperature range for unpoled and field cooling with an electric field (FC) conditions.


2010 ◽  
Vol 150-151 ◽  
pp. 1470-1475
Author(s):  
Gui Lin Song ◽  
Tian Xing Wang ◽  
Cun Jun Xia ◽  
Chao Li ◽  
Fang Gao Chang

Multiferroic Bi1-xGdxFeO3(x=0, 0.05, 0.1, 0.15, 0.2) ceramics were prepared by conventional solid state reaction method. For all the samples prepared, they exhibit magnetoelectric effect at room temperature, and the dielectric constant and dielectric loss decrease with increasing frequency in the range from 10000Hz to 1 MHz from a typical orientational dielectric relaxation process. It has been found that both dielectric constant and dielectric loss are strongly dependent on the Gd3+ content. And substitution of Bi with rare earth Gd helps to eliminate the impurity phase in BiFeO3 ceramics.,


2014 ◽  
Vol 938 ◽  
pp. 123-127 ◽  
Author(s):  
G. Shanmuganathan ◽  
I.B. Shameem Banu

ZnO nanocomposites such as (ZnO)0.8(MnO2)0.2, (ZnO)0.8(TiO2)0.2and (ZnO)0.8(MnO2)0.1(TiO2)0.1were prepared by solid state reaction method at room temperature. The structural analysis was carried out with help of powder XRD to confirm the formation of the composites. The morphological properties and presence of elemental compositions were analyzed with scanning electron microscope and energy dispersive analysis spectroscopy respectively. Optical properties were studied with UV visible spectrophotometer. From the transmittance spectrum, it is concluded that the synthesized composite materials have the transmittance in the range of 80 to 95% in the visible region. The calculated optical band gap values for pure ZnO is 3.16 eV and the values are 3.7eV, 5.27eV and 4.46eV for the composites ZnO/MnO2, ZnO/TiO2and ZnO/MnO2/TiO2, respectively. The study has found that the ZnO/MnO2, ZnO/TiO2and ZnO/MnO2/TiO2composites have very large energy gap as that of insulator.


2017 ◽  
Vol 126 (1B) ◽  
pp. 147
Author(s):  
Nguyen Thi Thuy

<p><strong>Abstract: </strong>LaFeO<sub>3</sub> system with doped Ti, Co, Cu was manufactured by solid state reaction method, it was sintered at 1250<sup>0</sup>C and 1290<sup>0</sup>C in 10 hours with a heating rate of 3<sup>0</sup>C/min. Using X-ray diffraction and Scanning Electron Microscope (SEM) to examine the structure, it reveals that samples are single-phase and orthogonal-perovskite structure describing by the Pnma space group, the unit cell volume of the samples increases when Ti, Co, Cu are doped to replace ion Fe<sup>+3</sup>. The size of particle increase while raising the temperature of sintering. Measuring the resistance which depends on temperature between the room temperature and 1000K, it can be seen that when doping Co, Cu with the nominal component La(Fe<sub>0,2</sub>Co<sub>0,2</sub>Ti<sub>0,6</sub>)O<sub>3</sub> and La(Fe<sub>0,4</sub>Cu<sub>0,1</sub>Ti<sub>0,5</sub>)O<sub>3 </sub>, the conductivity of samples increases respectively. Especially, the conductivity of Cu doped sample is higher than two other samples, and reach the highest conductivity at about 900<sup>0</sup>C, Seebeck coefficient S of La(Fe<sub>0.6</sub>Ti<sub>0.4</sub>)O<sub>3</sub> can be change from positive to negative at the temperature of around 700<sup>0</sup>C.</p>


Sign in / Sign up

Export Citation Format

Share Document