scholarly journals Role of Gliricidia sepium in Improving Aggregate Stability of Ultisol Limau Manis Padang: A LABoratory study

Jurnal Solum ◽  
2012 ◽  
Vol 9 (1) ◽  
pp. 44
Author(s):  
Yulnafatmawita Yulnafatmawita ◽  
Asmar Asmar ◽  
Vitria Purnamasari

There is no much public concern about soil aggregate stability improvement of a soil.  This is due to the fact that it does not directly affect crop yield for a short term, but it determines sustainable agriculture and development for a long term.  This research was aimed to investigate soil physical properties especially soil aggregate stability of Ultisols after fresh OM application, then to determine the exact OM dosage to improve the stability.  Ultisols used was from Limau Manis (± 367 m asl), an area in lower footslope of Mount Gadut, having wet tropical rainforest. Due to land use change, farming activities in that sloping area could enhance erosion process in the environment.  Therefore, efforts to anticipate the erosion must be found.  Fresh OM applied was Gliricidia sepium which was found plenty in the area.  Five levels of fresh Gliricidia sepium, were 0, 5, 10, 15, and 20 t/ha.  Top soil (0-20 cm depth) was mixed with OM, then incubated for 3 months in glasshouse.  The results after a 3-month incubation showed that SOM content did not statistically increase, but it improved based on the criteria, from very low to low level as OM was applied for ≥ 10 t/ha. It seemed that 10 t/ha Gliricidia sepium was the best dosage at this condition. There was a positive correlation between SOM content and aggregate stability index of Ultisols after fresh Gliricidia sepium addition.Keywords: Ultisols, soil aggregate stability, soil organic matter content


2021 ◽  
Vol 51 ◽  
Author(s):  
Pedro Luan Ferreira da Silva ◽  
Flávio Pereira de Oliveira ◽  
Adriana Ferreira Martins ◽  
Danillo Dutra Tavares ◽  
André Julio do Amaral

ABSTRACT Integrated farming systems are promising strategies for the recovery of pastures and degraded soils. This study aimed to evaluate the effect of integrated farming systems arrangements, after four years of implementation, on the fertility, carbon stock and aggregate stability of an Alfisol, in the semiarid region of the Paraíba state, Brazil. A randomized block experimental design was used, with 5 treatments and 4 replications: Brachiaria decumbens; B. decumbens + Tabebuia impetiginous; B. decumbens + Gliricidia sepium; B. decumbens + Mimosa caesalpiniifolia; and B. decumbens + maize. The soil chemical attributes, fertility, carbon stock and structural and aggregate stability were evaluated in the 0.00-0.10, 0.10-0.20 and 0.20-0.30 m layers. The B. decumbens + maize system presented an organic matter content 11.93 % higher than B. decumbens, and was higher than the other systems evaluated. Concerning the carbon stock in the 0.00-0.10 m layer, in B. decumbens the uptake was 2.66 Mg ha-1 higher than that of the B. decumbens + maize system and, on average, 4.69 Mg ha-1 higher than for the systems with the arboreal component. In the medium-term, B. decumbens is more efficient in adding carbon to the soil. The soil structural stability, aggregate stability index and fertility were not affected by the different arrangements after four years of implementation.



Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Radka Kodešová ◽  
Marcela Rohošková ◽  
Anna Žigová

AbstractSoil structure stability was studied in every diagnostic horizons of six soil types (Haplic Chernozem, Greyic Phaeozem, two Haplic Luvisols, Haplic Cambisol, Dystric Cambisol) using different techniques investigating various destruction mechanisms of soil aggregates. Soil aggregate stability, assessed by the index of water stable aggregates (WSA), varied depending on the organic matter content, clay content and pHKCl. The presence of clay and organic matter coatings and fillings, and presence of iron oxides in some soils increased stability of soil aggregates. On the other hand periodical tillage apparently decreased aggregate stability in the Ap horizons. Coefficients of aggregate vulnerability resulting from fast wetting (KV 1) and slow wetting (KV 2) tests showed similar trends of the soil aggregate stability as the WSA index, when studied for soils developed on the similar parent material. There was found close correlation between the WSA index and the KV 1 value, which depended also on the organic matter content, clay content and pHKCl. Less significant correlation was obtained between the WSA index and the KV 2 value, which depended on the organic matter content and clay content. Coefficients of vulnerability resulting from the shaking after pre-wetting test (KV 3) showed considerably different trends in comparison to the other tests due to the different factors affecting aggregate stability against the mechanical destruction. The KV 3 value depended mostly on cation exchange capacity, pHKCl and organic matter content.



2021 ◽  
Author(s):  
Konrad Greinwald ◽  
Tobias Gebauer ◽  
Ludwig Treuter ◽  
Victoria Kolodziej ◽  
Alessandra Musso ◽  
...  

<p><strong>Aims:</strong></p><p>The stability of hillslopes is an essential ecosystem service, especially in alpine regions with soils prone to erosion. One key variable controlling hillslope stability is soil aggregate stability. However, there is comparatively little knowledge about how vegetation dynamics affect soil aggregate stability during landscape evolution.</p><p><strong>Methods:</strong></p><p>We quantified soil aggregate stability by determining the Aggregate Stability Coefficient (ASC), which was developed for stone-rich soils. To reveal how hillslope aging and corresponding changes in vegetation affect the evolution of ASC, we measured plant cover, diversity, and root traits along two chronosequences in the Swiss Alps.</p><p><strong>Results:</strong></p><p>We found a significant positive effect of vegetation cover and diversity on ASC that was mediated via root traits. These relationships, however, developed in a time-depended manner: At young terrain ages, above- and belowground vegetation characteristics had a stronger effect on aggregate stability than species diversity, whereas these relationships were weaker at older stages.</p><p><strong>Conclusions:</strong></p><p>Our findings highlight the importance of vegetation dynamics for the evolution of aggregate stability and enhance our understanding of processes linked to hillslope stabilization, which is a key priority to avoid further soil degradation and connected risks to human safety in alpine areas.</p>



2019 ◽  
Vol 43 ◽  
Author(s):  
Marisângela Viana Barbosa ◽  
Daniela de Fátima Pedroso ◽  
Nilton Curi ◽  
Marco Aurélio Carbone Carneiro

ABSTRACT Soil structure, which is defined by the arrangement of the particles and the porous space forming aggregates, is one of the most important properties of the soil. Among the biological factors that influence the formation and stabilization of soil aggregates, arbuscular mycorrhizal fungi (AMF) are distinguished due to extrarradicular hyphae and glomalin production. In this context, the objective of this study was to evaluate different AMF (Acaulospora colombiana, Acaulospora longula, Acaulospora morrowiae, Paraglomus occultum and Gigaspora margarita) associated with Urochloa brizantha (A. Rich.) Stapf on soil aggregate stability. The study was conducted in a completely randomized design, using an Oxisol and autoclaved sand 2:1 (v/v), with seven treatments: five AMF; and treatments with plants without inoculation and with only the soil, with 5 replicates. The experiment was conducted during 180 days and the following variables were evaluated: mycelium total length (TML); production of easily extractable glomalin-related soil protein (GRSP) in the soil and aggregate classes; stability of the dry and immersed in water aggregates through the mean geometric diameter (MGD) and the mean weighted diameter (MWD) of aggregates; and the soil aggregate stability index (ASI). It was observed that the inoculation favored soil aggregation, with a high incidence of A. colombiana, which presented the highest MGD, TML and GRSP production in the aggregates with Ø>2.0mm and for A. colombiana and A. morrowiae in the aggregates with Ø<0.105 mm, when compared to the treatment without inoculation. These results show that there is a distinction between the effects of different AMF on the formation and stability of soil aggregates.





2020 ◽  
Vol 8 (1) ◽  
pp. 75-81
Author(s):  
Dendy Detafiano Prakasa Afner ◽  
A Aprisal ◽  
Y Yulnafatmawita

Land-use change from the forest into tea plantation in Solok Regency in 1983 has decreased the area of forests in Gunung Talang District. Clearing up the forest at the beginning for tea plantation could worsen the physical and chemical conditions of the soil. One of which is soil aggregate stability that is very dynamic and can influence other soil physical properties. This study was aimed to determine soil Aggregate Stability Index (ASI) at tea plantations. Soil samples was taken at a depth of 0-20 cm from five different slopes (0-8% (A), 8-15% (B), 15-25% (C), 25-45% (D), and> 45% (E)) and at two crop ages (10 and 35 years old). The results showed that the soil aggregate stability index at tea plantations ranged from stable to very stable. It tended to decrease by increasing slope percentage at each of crop age, Between the ages, it showed higher ASI at 35 years old crop age under relatively flat (0-8%) and very steep (>45%) areas.





Sign in / Sign up

Export Citation Format

Share Document