COMPARATIVE STUDY OF ELECTROLYSIS-ENHANCED ANAEROBIC DIGESTION OF THREE SOLUBLE SOLID WASTES FOR BIOGAS PRODUCTION

Author(s):  
Adewumi A ◽  
Lasisi K H ◽  
Akinmusere O K ◽  
Ojo A O ◽  
Babatola J O

<p><strong>Aim</strong>: A comparative study of biogas production from three soluble solid wastes was conducted under anaerobic conditions by subjecting each waste to both conventional and electrolyzed digesters. <strong>Methodology and Results</strong>: Varying weight of each of the waste was mixed thoroughly with water and fed into five digesters. Three of these digesters were electrolytically-enhanced while the other two were not. The digestion of each of the wastes was monitored for 40 days at an ambient temperature ranging from 24 to 35oC. In all the digesters, biogas production started on the day 2, and attained maximum value on day 14 to17. Biogas production ended on the day 34 and 35 in digester 1a, 1b, 2a and 2b with production ending earliest in digester 3 containing wastewater on day 19. The highest biogas was produced in digester 2b containing electrolyzed digester loaded with poultry droppings) with a cumulative volume percentage of 91.41 as compared to its conventional state with a cumulative volume percentage of 85.19 and both states of the cow dung waste with cumulative volume percentages of 77.26 and 71.64 respectively. The least production occurred in digester 3 with a cumulative volume percentage of 4.59. <strong>Conclusion, significance and impact study</strong>: It is therefore concluded that poultry droppings has the greatest potentials for the generation of biogas as compared to cow dung in conventional and electrolyzed state and wastewater.</p>

2007 ◽  
Vol 18-19 ◽  
pp. 519-525 ◽  
Author(s):  
S.J. Ojolo ◽  
R.R. Dinrifo ◽  
K.B. Adesuyi

In this work, a comparative study of biogas production from poultry droppings, cattle dung, kitchen waste, fruit waste and vegetable waste was done under the same operating conditions. 3kg of each waste was mixed with 9kg of water and loaded into the 5 constructed digesters. Biogas production was measured using water displacement method for a period of 40 days and at an average temperature of 30.5oC. Results indicated that poultry droppings produced 0.0332dm3/day, cow dung produced 0.0238dm3/day, Kitchen waste produced 0.0080dm3/day, vegetable waste produced 0.0066dm3/day and fruit waste with 0.0022dm3/day. It is concluded that poultry droppings produced more biogas because it contains more nutrients and nitrogen compared with plant and other animal waste


2019 ◽  
Vol 08 (03) ◽  
pp. 145-154
Author(s):  
I. J. Ona ◽  
S. M. Loya ◽  
H. O. Agogo ◽  
M. S. Iorungwa ◽  
R. Ogah

Author(s):  
Oludare Johnson Odejobi ◽  
Oluwagbenga Abiola Olawuni ◽  
Samuel Olatunde Dahunsi ◽  
Akinbiyi Ayomikusibe John

The present study evaluates the influence of kitchen wastes on animal manures via anaerobic digestion for biogas production. The digestion was done using a digester with a capacity of 5L. The digester was loaded with the slurry of wastes prepared by mixing the wastes with water in ratio 1:1, and operated at mesophilic temperature of 37 ± 2°C for 30 days. The co-digestion of kitchen wastes with poultry droppings produced highest biogas yield (814.0 ml/kg VS fed) and the least (365.84 ml/kg VS fed) was from the co-digestion of kitchen wastes with the mixture of poultry droppings and cow dung. Composition analysis of the biogas showed the highest methane content (63.1%) from kitchen wastes and the lowest (56.2%) from co-digestion of kitchen wastes with poultry droppings. The pH range for optimum biogas production varied between 5.25 and 7.5. The study concluded that biogas yield from co-digestion of substrates, among other factors depends on the composition of participating substrates.


2013 ◽  
Vol 8 (18) ◽  
pp. 1940-1948 ◽  
Author(s):  
C Chukwuma E ◽  
C E Umeghalu I ◽  
C Orakwe L ◽  
E Bassey E ◽  
N Chukwuma J

2014 ◽  
Vol 157 ◽  
pp. 270-277 ◽  
Author(s):  
I.M. Alfa ◽  
S.O. Dahunsi ◽  
O.T. Iorhemen ◽  
C.C. Okafor ◽  
S.A. Ajayi

2021 ◽  
Vol 25 (7) ◽  
pp. 1289-1293
Author(s):  
O.M. Ojo

The aim of this study is to assess the quantity and quality of biogas produced from single substrate digestion of food waste and cow dung as well as co-digestion of food waste and cow dung. Laboratory sized 25 litre plastic biodigesters were used in this study and the digestion processes was carried out for a 30 day retention period. The results revealed that the cumulative biogas production for the single substrate digestion of cow dung was 7,975 ml, the cumulative biogas produced for the single substrate digestion of food waste was 7,742.5 ml while the cumulative volume of biogas produced for the co-digestion of cow dung and food waste was 16,482.5 ml. The results also showed that the total volume of methane produced for the single substrate digestion of cow dung was 955 ml while the total methane produced for the single substrate digestion of the food waste was 765. The total production of methane for the co-digestion of cow dung and food waste was found to be 2,655 ml. This study revealed that though the co-digestion process improved biogas quantity and quality, the percentage methane present in the biogas very low. There would be a need to stimulate the digestion and co-digestion process in order to improve the quality of biogas produced.


Sign in / Sign up

Export Citation Format

Share Document