scholarly journals Biogas Production from the Co-Digestion of Cornstalks with Cow Dung and Poultry Droppings

2019 ◽  
Vol 08 (03) ◽  
pp. 145-154
Author(s):  
I. J. Ona ◽  
S. M. Loya ◽  
H. O. Agogo ◽  
M. S. Iorungwa ◽  
R. Ogah
Author(s):  
Oludare Johnson Odejobi ◽  
Oluwagbenga Abiola Olawuni ◽  
Samuel Olatunde Dahunsi ◽  
Akinbiyi Ayomikusibe John

The present study evaluates the influence of kitchen wastes on animal manures via anaerobic digestion for biogas production. The digestion was done using a digester with a capacity of 5L. The digester was loaded with the slurry of wastes prepared by mixing the wastes with water in ratio 1:1, and operated at mesophilic temperature of 37 ± 2°C for 30 days. The co-digestion of kitchen wastes with poultry droppings produced highest biogas yield (814.0 ml/kg VS fed) and the least (365.84 ml/kg VS fed) was from the co-digestion of kitchen wastes with the mixture of poultry droppings and cow dung. Composition analysis of the biogas showed the highest methane content (63.1%) from kitchen wastes and the lowest (56.2%) from co-digestion of kitchen wastes with poultry droppings. The pH range for optimum biogas production varied between 5.25 and 7.5. The study concluded that biogas yield from co-digestion of substrates, among other factors depends on the composition of participating substrates.


2013 ◽  
Vol 8 (18) ◽  
pp. 1940-1948 ◽  
Author(s):  
C Chukwuma E ◽  
C E Umeghalu I ◽  
C Orakwe L ◽  
E Bassey E ◽  
N Chukwuma J

2007 ◽  
Vol 18-19 ◽  
pp. 519-525 ◽  
Author(s):  
S.J. Ojolo ◽  
R.R. Dinrifo ◽  
K.B. Adesuyi

In this work, a comparative study of biogas production from poultry droppings, cattle dung, kitchen waste, fruit waste and vegetable waste was done under the same operating conditions. 3kg of each waste was mixed with 9kg of water and loaded into the 5 constructed digesters. Biogas production was measured using water displacement method for a period of 40 days and at an average temperature of 30.5oC. Results indicated that poultry droppings produced 0.0332dm3/day, cow dung produced 0.0238dm3/day, Kitchen waste produced 0.0080dm3/day, vegetable waste produced 0.0066dm3/day and fruit waste with 0.0022dm3/day. It is concluded that poultry droppings produced more biogas because it contains more nutrients and nitrogen compared with plant and other animal waste


2014 ◽  
Vol 157 ◽  
pp. 270-277 ◽  
Author(s):  
I.M. Alfa ◽  
S.O. Dahunsi ◽  
O.T. Iorhemen ◽  
C.C. Okafor ◽  
S.A. Ajayi

Author(s):  
Adewumi A ◽  
Lasisi K H ◽  
Akinmusere O K ◽  
Ojo A O ◽  
Babatola J O

<p><strong>Aim</strong>: A comparative study of biogas production from three soluble solid wastes was conducted under anaerobic conditions by subjecting each waste to both conventional and electrolyzed digesters. <strong>Methodology and Results</strong>: Varying weight of each of the waste was mixed thoroughly with water and fed into five digesters. Three of these digesters were electrolytically-enhanced while the other two were not. The digestion of each of the wastes was monitored for 40 days at an ambient temperature ranging from 24 to 35oC. In all the digesters, biogas production started on the day 2, and attained maximum value on day 14 to17. Biogas production ended on the day 34 and 35 in digester 1a, 1b, 2a and 2b with production ending earliest in digester 3 containing wastewater on day 19. The highest biogas was produced in digester 2b containing electrolyzed digester loaded with poultry droppings) with a cumulative volume percentage of 91.41 as compared to its conventional state with a cumulative volume percentage of 85.19 and both states of the cow dung waste with cumulative volume percentages of 77.26 and 71.64 respectively. The least production occurred in digester 3 with a cumulative volume percentage of 4.59. <strong>Conclusion, significance and impact study</strong>: It is therefore concluded that poultry droppings has the greatest potentials for the generation of biogas as compared to cow dung in conventional and electrolyzed state and wastewater.</p>


2018 ◽  
Vol 7 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Agus Haryanto ◽  
Sugeng Triyono ◽  
Nugroho Hargo Wicaksono

The efficiency of biogas production in semi-continuous anaerobic digester is influenced by several factors, among other is loading rate. This research aimed at determining the effect of hydraulic retention time (HRT) on the biogas yield. Experiment was conducted using lab scale self-designed anaerobic digester of 36-L capacity with substrate of a mixture of fresh cow dung and water at a ratio of 1:1. Experiment was run with substrate initial amount of 25 L and five treatment variations of HRT, namely 1.31 gVS/L/d (P1), 2.47 gVS/L/d (P2), 3.82 gVS/L/d (P3), 5.35 gVS/L/d (P4) and 6.67 gVS/L/d (P5). Digester performance including pH, temperature, and biogas yield was measured every day. After stable condition was achieved, biogas composition was analyzed using a gas chromatograph. A 10-day moving average analysis of biogas production was performed to compare biogas yield of each treatment. Results showed that digesters run quite well with average pH of 6.8-7.0 and average daily temperature 28.7-29.1. The best biogas productivity (77.32 L/kg VSremoval) was found in P1 treatment (organic loading rate of 1.31 g/L/d) with biogas yield of 7.23 L/d. With methane content of 57.23% treatment P1 also produce the highest methane yield. Biogas production showed a stable rate after the day of 44. Modified Gompertz kinetic equation is suitable to model daily biogas yield as a function of digestion time.Article History: Received March 24th 2018; Received in revised form June 2nd 2018; Accepted June 16th 2018; Available onlineHow to Cite This Article: Haryanto, A., Triyono, S., and Wicaksono, N.H. (2018) Effect of Loading Rate on Biogas Production from Cow Dung in A Semi Continuous Anaerobic Digester. Int. Journal of Renewable Energy Development, 7(2), 93-100.https://doi.org/10.14710/ijred.7.2.93-100


2021 ◽  
Vol 25 (6) ◽  
pp. 969-975
Author(s):  
M.K. Peter ◽  
SIN Agera ◽  
J.I. Amonum

This study investigated the effects of potting media on seed germination and early seedling growth of Pterocarpus erinaceus Poir at the Forestry Nursery in Jos, Nigeria. Using Completely Randomized Design (CRD) with three replicates, laboratory-tested soil samples, top soil, sharp sand, sharp sand + top soil, sharp sand + top soil + cow dung and sharp sand + top soil + poultry droppings were used in various combinations to assess the growth parameters of P. erinaceus (germination percentage, emergence, plant height, number of leaves, length of leaves and stem diameter) for 12 weeks. Descriptive and inferential statistics were employed to analyze collected data. Result indicated that sharp sand + top soil + poultry droppings had the highest nitrogen concentration (2.19%), sharp sand + top soil + cow dung (2.07%), sharp sand + top soil (1.50%), top soil (0.72%) and Sharp sand (0.38%). Potting media with poultry droppings recorded an overall higher percentage germination of 42.9% by the end of the germination period. Analysis of variance (ANOVA) of collected data on combined soil aggregate on growth parameters indicated a significant (p<0.05) difference in plant height, number of leaves, leaf length and stem diameter. Potting with poultry dropping gave the best potting media growth results when compared to other treatments that enhanced seed germination and seedling growth of P. erinaceus. This superior observation of the poultry droppings incorporated potting mixtures over the cow dung provides an outstanding potentials to enhance P. erinaceus plantation establishment. Consequently, recommended for raising seedlings in the nursery as well as ensuring sustainable management.


2022 ◽  
Author(s):  
Adedeji A. Adelodun ◽  
Temitope M. Olajire ◽  
Ochuko Mary Ojo

Using biomass as a renewable energy source has earned tremendous interest from researchers in recent decades, especially because the technology is environmentally benign. This article reviews the recent methods for generating biogas from water hyacinth (WH, Eichornia crassipes), arguably the world’s most evasive aquatic macrophyte. Therefore, various economic, environmentally benign, and renewable procedures that enhance biogas production from WH biomass are reviewed. WH has been co-digested with numerous waste types, including poultry droppings, municipal wastes, animal tissue wastes, pig wastes, cow dungs, etc., recording varying success degrees. Other studies focused on optimizing the operation parameters, such as mixing ratio, contact time, pH, temperature, organic loading rate, etc. We observed that most attempts to generate biogas from WH alone were not promising. However, when co-digested with other biomasses or wastes, WH either increases the process rate or improves the methane yield content. Also, the potential of WH as a phytoremdiator-cum-biogas source was investigated. This chapter provides mathematical models, scale-up installation models, and specific experimental results from various studies to guide future study plans toward optimizing CH4 generation from WH co-digestion.


Sign in / Sign up

Export Citation Format

Share Document