scholarly journals Determination of optimum mixing ratio of cow dung and poultry droppings in biogas production under tropical condition

2013 ◽  
Vol 8 (18) ◽  
pp. 1940-1948 ◽  
Author(s):  
C Chukwuma E ◽  
C E Umeghalu I ◽  
C Orakwe L ◽  
E Bassey E ◽  
N Chukwuma J
2019 ◽  
Vol 08 (03) ◽  
pp. 145-154
Author(s):  
I. J. Ona ◽  
S. M. Loya ◽  
H. O. Agogo ◽  
M. S. Iorungwa ◽  
R. Ogah

2021 ◽  
Author(s):  
Abdoliman Amouei ◽  
Ali Darvish Sasi ◽  
Aliakbar Amooey

Abstract Today, biogas production from municipal solid waste as one of the most important sources of energy supply in the world is increasing. In this study, the potential of biogas production from a mixture of cow dung and catering waste was investigated using a continuous flow anaerobic bioreactor with 60 litres at the Bench scale. Operational parameters such as pH, Carbon to Nitrogen ratio (C/N), mixing ratio of restaurant and cow waste in weight percentage (0:100, 50:50, 70:30, and 100:0), total solids (TS) (%5, %10 and %20), temperatures (35, 45 and 55°C) and oxidation-reduction potential (ORP) were evaluated. The results showed that the maximum yield and percent of the biogas produced from cow manure digestion separately was 1003 ml/day and %52.82. Digestion of the catering waste and cow manure as a mixture showed the best mixing ratio, total solid and temperature is 70:30 (w/w), %20 and 55°C respectively and biogas production yield and percent in this conditions was obtained 5430 ml/day and %74.4 respectively. The ORP obtained in this study is -327 millivolt (mv), which indicates the appropriate conditions of the anaerobic process in biogas production and confirmation of methanogenesis.


Author(s):  
Oludare Johnson Odejobi ◽  
Oluwagbenga Abiola Olawuni ◽  
Samuel Olatunde Dahunsi ◽  
Akinbiyi Ayomikusibe John

The present study evaluates the influence of kitchen wastes on animal manures via anaerobic digestion for biogas production. The digestion was done using a digester with a capacity of 5L. The digester was loaded with the slurry of wastes prepared by mixing the wastes with water in ratio 1:1, and operated at mesophilic temperature of 37 ± 2°C for 30 days. The co-digestion of kitchen wastes with poultry droppings produced highest biogas yield (814.0 ml/kg VS fed) and the least (365.84 ml/kg VS fed) was from the co-digestion of kitchen wastes with the mixture of poultry droppings and cow dung. Composition analysis of the biogas showed the highest methane content (63.1%) from kitchen wastes and the lowest (56.2%) from co-digestion of kitchen wastes with poultry droppings. The pH range for optimum biogas production varied between 5.25 and 7.5. The study concluded that biogas yield from co-digestion of substrates, among other factors depends on the composition of participating substrates.


2007 ◽  
Vol 18-19 ◽  
pp. 519-525 ◽  
Author(s):  
S.J. Ojolo ◽  
R.R. Dinrifo ◽  
K.B. Adesuyi

In this work, a comparative study of biogas production from poultry droppings, cattle dung, kitchen waste, fruit waste and vegetable waste was done under the same operating conditions. 3kg of each waste was mixed with 9kg of water and loaded into the 5 constructed digesters. Biogas production was measured using water displacement method for a period of 40 days and at an average temperature of 30.5oC. Results indicated that poultry droppings produced 0.0332dm3/day, cow dung produced 0.0238dm3/day, Kitchen waste produced 0.0080dm3/day, vegetable waste produced 0.0066dm3/day and fruit waste with 0.0022dm3/day. It is concluded that poultry droppings produced more biogas because it contains more nutrients and nitrogen compared with plant and other animal waste


2014 ◽  
Vol 157 ◽  
pp. 270-277 ◽  
Author(s):  
I.M. Alfa ◽  
S.O. Dahunsi ◽  
O.T. Iorhemen ◽  
C.C. Okafor ◽  
S.A. Ajayi

2020 ◽  
Vol 181 ◽  
pp. 01005
Author(s):  
Makhura Emmanuel Pax ◽  
Edison Muzenda ◽  
Tumeletso Lekgoba

This paper aims at finding the effect of co-digestion of cow dung and food waste on total biogas yield. Biogas production was improved through co-digestion of cow dung and food waste (FW) containing a small fraction of inoculum under mesophilic temperature (37ºC) over a retention time of 24 days. Co-digestion ratios of 1:1, 2:1 and 3:1 for cowdung/foodwaste were used for the study on anaerobic digestion on the co digested matter. Tests were carried out starting with the preparation of substrates, substrate characterization to determine the moisture content (MC), total solids (TS), volatile solids (VS) and ultimately batch anaerobic digestion experiments under thermophilic conditions (370C). The moisture content, volatile solids and total solids for food waste were 78, 22 and 90.7% respectively while the characteristics for cow dung were 67.2, 32.8 and 96.0 % respectively. From the study, a mixing ratio of cow dung: food waste of 1:2 was found to be the optimum substrate mixture for biogas production at 25595.7 Nml. The accumulated gas volumes of 18756.6, 14042.5, 13940.8 and 13839.1 Nml were recorded for cow dung: food waste ratios of 2:1, 1:1, 1:3 and 3:1 respectively. For a co-digestion containing more of the food waste than cow dung, a higher volume of biogas is produce.


2019 ◽  
pp. 54-61 ◽  
Author(s):  
Younoussa Moussa Baldé ◽  
Cellou Kanté ◽  
Sette Diop ◽  
Sihem Tebbani

The present work is an account of an ongoing work on biogas production from animal wastes at LEREA (Laboratoire d’enseignement et de recherche en énergétique appliquée) in Mamou, Guinea. The work consists of biogas production from anaerobic digestion and co-digestion of cow dung and droppings. We focus in this report on the determination of the physico-chemical characteristics of the experimental setup. We have carried out three experiments of anaerobic digestion each one lasting 45 days at mesophilic temperature (temperature was maintained in the range 27°C - 28°C). Biogas - 28.4 liters have been obtained from droppings, 22.6 liters from cow dung and 38.7 liters from co-digestion of the previous two wastes. The following physico-chemical characteristcs were observed for cow dung: humidity 43%, dry matter 20.83%, organic matter 57%, density 625kg/m3, carbon content 31%, nitrogen content 1.46%, nitrogen-carbon ratio 21/30. For droppings we measured: humidity 35%, dry matter 65%, organic matter 62%, density 250 kg/m3, carbon content 36%, nitrogen level 1.83%. This characterization was carried out on a sample of 3 g of each type of substrate. These results agree with those of the literature that we were able to compare with. Keywords: anaerobic digestion; anaerobic co-digestion; physico-chimical characterization; cow dung weste; droppings weste; methanation; animal waste


Author(s):  
Adewumi A ◽  
Lasisi K H ◽  
Akinmusere O K ◽  
Ojo A O ◽  
Babatola J O

<p><strong>Aim</strong>: A comparative study of biogas production from three soluble solid wastes was conducted under anaerobic conditions by subjecting each waste to both conventional and electrolyzed digesters. <strong>Methodology and Results</strong>: Varying weight of each of the waste was mixed thoroughly with water and fed into five digesters. Three of these digesters were electrolytically-enhanced while the other two were not. The digestion of each of the wastes was monitored for 40 days at an ambient temperature ranging from 24 to 35oC. In all the digesters, biogas production started on the day 2, and attained maximum value on day 14 to17. Biogas production ended on the day 34 and 35 in digester 1a, 1b, 2a and 2b with production ending earliest in digester 3 containing wastewater on day 19. The highest biogas was produced in digester 2b containing electrolyzed digester loaded with poultry droppings) with a cumulative volume percentage of 91.41 as compared to its conventional state with a cumulative volume percentage of 85.19 and both states of the cow dung waste with cumulative volume percentages of 77.26 and 71.64 respectively. The least production occurred in digester 3 with a cumulative volume percentage of 4.59. <strong>Conclusion, significance and impact study</strong>: It is therefore concluded that poultry droppings has the greatest potentials for the generation of biogas as compared to cow dung in conventional and electrolyzed state and wastewater.</p>


2018 ◽  
Vol 10 (1) ◽  
pp. 41-48
Author(s):  
Le Phuong Nguyen ◽  
Thanh Ai Lam ◽  
Thi Diem Trang Nguyen ◽  
Huu Chiem Nguyen ◽  
Vo Chau Ngan Nguyen

The study was aimed to investigate the effect of corn stalk pre-treatment duration on biogas production when cow dung and corn stalk was co-digested in an anaerobic digestion. Corn stalks were pre-treated in different durations: 2-days, 5-days, and 8-days before being added to cow dung into anaerobic co-digesters. The experiments were set up randomly by using triplicate batch anaerobic apparatus in 21 L containers that run in 60-days. The mixing ratio between a corn stalk and cow dung was 50%: 50% (based on the volatile solid value of each material), but corn stalk was cut into small pieces with around 10 cm length, while the cow dung was air dried. The results of the study indicated that all operation parameters such as temperature, pH, and alkalinity in the anaerobic batch were suitable for biogas production. The results showed that there was a significant improvement in total gas produced in the pre-treated 5-days treatment (206.4±8.4 L) compared to 2-days (153.4±9.6 L), and 8-days ones (174±11.1 L). The biogas yield of the pre-treated 2-days, 5-days, and 8-days treatments were 392.7±9.8 L/kg VSfermented, 469.8±10.1 L/kg VSfermented and 497.1±13.3 L/kg VSfermented, respectively, that was not significantly different (5%). In all treatments, low concentration of methane in the beginning phase had been observed but increased and reached the optimum value for energy use after 10 days. The result of the study showed that it is preferable to have 5-days pre-treatment of corn stalk before the corn stalk is loaded to an anaerobic digester in combination with cow dung. Nghiên cứu này nhằm đánh giá ảnh hưởng của thời gian xử lý thân cây bắp lên năng suất sinh khí khi ủ phối trộn phân bò và thân cây bắp trong điều kiện yếm khí. Ba mức thời gian xử lý thân cây bắp được chọn là 2 ngày, 5 ngày, và 8 ngày. Các thí nghiệm được bố trí ngẫu nhiên trong các bình ủ yếm khí theo mẻ 21 L, vận hành trong 60 ngày liên tiếp và có 3 lần lặp lại. Nguyên liệu ủ được phối trộn theo tỷ lệ 50% phân bò và 50% thân bắp, trong đó thân bắp được cắt nhỏ cỡ 10 cm. Kết quả thí nghiệm cho thấy tất cả các thông số pH, nhiệt độ, độ kiềm của mẻ ủ đều phù hợp để vận hành. Lượng khí sinh ra của các nghiệm thức xử lý ở 2 ngày, 5 ngày, 8 ngày được ghi nhận là 153,4±9,6 L, 206,4±8,4 L và 174±11,1 L; năng suất sinh khí của các nghiệm thức không khác biệt và đạt giá trị 392,7±9,8 L/kg VSphânhủy, 469,8±10,1 L/kg VSphânhủy và 497,1±13,3 L/kg VSphânhủy. Tất cả các nghiệm thức đều sản sinh lượng CH4 thấp ở giai đoạn đầu nhưng tăng dần theo thời gian ủ và đạt hiệu quả sử dụng sau 10 ngày ủ. Kết quả cho thấy có thể chọn mốc thời gian 5 ngày để xử lý thân cây bắp trước khi đưa vào hầm ủ biogas.


Sign in / Sign up

Export Citation Format

Share Document