scholarly journals Perbandingan Convolution Neural Network Untuk Klasifikasi Kesegaran Ikan Bandeng Pada Citra Mata

2021 ◽  
Vol 8 (3) ◽  
pp. 601
Author(s):  
Eko Prasetyo ◽  
Rani Purbaningtyas ◽  
Raden Dimas Adityo ◽  
Enrico Tegar Prabowo ◽  
Achmad Irfan Ferdiansyah

<p class="Abstrak">Ikan merupakan salah satu sumber protein hewani dan sangat diminati masyarakat Indonesia, dari survey bahan makanan yang diminati, bandeng peringkat keempat dibanding bahan makanan yang lain. Khususnya ikan bandeng, ikan ini menjadi satu dari enam ikan yang banyak dikonsumsi masyarakat selain tongkol, kembung, teri, mujair dan lele, maka ketelitian masyarakat ketika membeli ikan bandeng menjadi perhatian serius dalam memilih ikan bandeng segar. Deteksi kesegaran dengan menyentuh tubuh ikan dapat mengakibatkan kerusakan tanpa disengaja, maka deteksi kesegaran ikan harus dilakukan tanpa menyentuh ikan bandeng dengan memanfaatkan citra kondisi mata. Dalam riset ini, kami melakukan eksperimen implementasi klasifikasi kesegaran ikan bandeng sangat segar dan tidak segar berdasarkan mata menggunakan transfer learning dari empat CNN, yaitu Xception, MobileNet V1, Resnet50, dan VGG16. Dari hasil eksperimen klasifikasi dua kelas kesegaran ikan bandeng menggunakan 154 citra menunjukkan bahwa VGG16 mencapai kinerja terbaik dibanding arsitektur lainnya dimana akurasi klasifikasi mencapai 0.97. Dengan akurasi lebih tinggi dibanding arsitektur lainnya maka VGG16 relatif lebih tepat digunakan untuk klasifikasi dua kelas kesegaran ikan bandeng.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstract"><em>Fish, one source of animal protein, is an exciting food for Indonesia's people. From a survey of food-ingredients demanded, milkfish are ranked fourth compared to other food-ingredients. Especially for milkfish, this fish is one of the six fish consumed by Indonesia's people besides tuna, bloating, anchovies, tilapia, and catfish, so the exactitude of the people when buying is a severe concern in choosing fresh milkfish. Detection of freshness by touching the fish's body may cause unexpected destruction, so detecting the fish's freshness should be conducted without touching using the eye image. In this research, we conducted an experimental implementation of freshness milkfish classification (vastly fresh and not fresh) based on the eyes using transfer learning from several CNNs, such as Xception, MobileNet V1, Resnet50, and VGG16. The experimental results of the classification of two milkfish freshness classes using 154 images show that VGG16 achieves the best performance compared to other architectures, where the classification accuracy achieves 0.97. With higher accuracy than other architectures, VGG16 is relatively more appropriate for classifying two classes of milkfish freshness.</em></p>

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1280 ◽  
Author(s):  
Yue Shen ◽  
Muhammad Abubakar ◽  
Hui Liu ◽  
Fida Hussain

The excessive use of power semiconductor devices in a grid utility increases the malfunction of the control system, produces power quality disturbances (PQDs) and reduces the electrical component life. The present work proposes a novel algorithm based on Improved Principal Component Analysis (IPCA) and 1-Dimensional Convolution Neural Network (1-D-CNN) for detection and classification of PQDs. Firstly, IPCA is used to extract the statistical features of PQDs such as Root Mean Square, Skewness, Range, Kurtosis, Crest Factor, Form Factor. IPCA is decomposed into four levels. The principal component (PC) is obtained by IPCA, and it contains a maximum amount of original data as compare to PCA. 1-D-CNN is also used to extract features such as mean, energy, standard deviation, Shannon entropy, and log-energy entropy. The statistical analysis is employed for optimal feature selection. Secondly, these improved features of the PQDs are fed to the 1-D-CNN-based classifier to gain maximum classification accuracy. The proposed IPCA-1-D-CNN is utilized for classification of 12 types of synthetic and simulated single and multiple PQDs. The simulated PQDs are generated from a modified IEEE bus system with wind energy penetration in the balanced distribution system. Finally, the proposed IPCA-1-D-CNN algorithm has been tested with noise (50 dB to 20 dB) and noiseless environment. The obtained results are compared with SVM and other existing techniques. The comparative results show that the proposed method gives significantly higher classification accuracy.


Classification phase is one of the important step for determining, analysing as well as diagnosing the diabetic retinopathy disorder. Nanostructures include red lesions, retinal hard macular exudates as well as Neovascularization would take up space aroundretina by the reason of devastation of veins. In order to computerise the technique pertaining to diabetic retinopathy phases categorization, a convolution neural network grounded method could be utilized. Colour fundus pictures of retina are collected during this work with aim of diabetic retinopathy classification among 5 phases by utilizing a convolution neural network. Convolution neural network with EfficientNet B5 network is employed for the phase classification of diabetic retinopathy disorder, a Kappa value (classification accuracy) of 88.48% is achieved.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 45993-45999
Author(s):  
Ung Yang ◽  
Seungwon Oh ◽  
Seung Gon Wi ◽  
Bok-Rye Lee ◽  
Sang-Hyun Lee ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Longzhi Zhang ◽  
Dongmei Wu

Grasp detection based on convolutional neural network has gained some achievements. However, overfitting of multilayer convolutional neural network still exists and leads to poor detection precision. To acquire high detection accuracy, a single target grasp detection network that generalizes the fitting of angle and position, based on the convolution neural network, is put forward here. The proposed network regards the image as input and grasping parameters including angle and position as output, with the detection manner of end-to-end. Particularly, preprocessing dataset is to achieve the full coverage to input of model and transfer learning is to avoid overfitting of network. Importantly, a series of experimental results indicate that, for single object grasping, our network has good detection results and high accuracy, which proves that the proposed network has strong generalization in direction and category.


Sign in / Sign up

Export Citation Format

Share Document