A geochemical study of the Crown Formation and Bird Member lavas of the Mesoarchaean Witwatersrand Supergroup, South Africa

Author(s):  
F. Humbert ◽  
A. Hofmann ◽  
M. de Kock ◽  
A. Agangi ◽  
Y-M. Chou ◽  
...  

Abstract: The ca. 2.97 to 2.80 Ga Witwatersrand Supergroup, South Africa, represents the oldest intracontinental sedimentary basin of the Kaapvaal craton. Two volcanic units occur in this supergroup: the widespread Crown Formation lavas in the marine shale-dominated West Rand Group and the more geographically restricted Bird Member lavas, intercalated with fluvial to fluvio-deltaic sandstone and conglomerate of the Central Rand Group. These units remain poorly studied as they are rarely exposed and generally deeply weathered when cropping out. We report whole-rock major and trace elements, Hf and Nd-isotope whole-rock analyses of the lavas from core samples drilled in the south of the Witwatersrand basin and underground samples from the Evander Goldfield in the northeast. In the studied areas, both the Crown Formation and Bird Member are composed of two units of lava separated by sandstone. Whereas all the Crown Formation samples show a similar geochemical composition, the upper and lower volcanic units of the Bird Member present clear differences. However, the primitive mantle-normalized incompatible trace element concentrations of all Crown Formation and Bird Member samples show variously enriched patterns and marked negative Nb and Ta anomalies relative to Th and La. Despite the convergent geodynamic setting of the Witwatersrand Supergroup suggested by the literature, the Crown Formation and Bird Member are probably not related to subduction-related magmatism but more to decompression melting. Overall, the combined trace element and Sm-Nd isotopic data indicate melts from slightly to moderately depleted sources that were variably contaminated with crustal material. Greater contamination, followed by differentiation in different magma chambers, can explain the difference between the two signatures of the Bird Member. Finally, despite previous proposals for stratigraphically correlating the Witwatersrand Supergroup to the Mozaan Group of the Pongola Supergroup, their volcanic units are overall geochemically distinct.

Author(s):  
E.G. Grosch ◽  
J. Slama

Abstract This study presents new field and petrological observations combined with geochemical data on a range of komatiitic to tholeiitic volcanic rocks from the ca. 3.48 Ga mid-lower Komati Formation type-section of the Barberton Greenstone Belt, South Africa. A range of mafic-ultramafic rocks is identified across a 1.44 km profile, leading to the proposition of a new preliminary volcanic architecture for the mid-lower Komati Formation type-section. Major, trace and rare earth element (REE) data in conjunction with Lu-Hf isotopic constraints indicate that the tholeiites, newly recognized high-magnesium basalts, basaltic komatiites and komatiites in the volcanic sequence have a primitive mantle signature with no geochemical affinity to Archaean or modern-day supra-subduction zone boninites. The whole rock initial εHf values of spinifex and massive komatiite flows in the lowermost part of the Komati type-section are negative, ranging between -1.9 and -3.1, whereas the second overlying spinifex and massive flow unit records positive initial εHf values between +0.5 and +4.7. A new geodynamic model involving crustal contamination of the mafic-ultramafic lavas is proposed for the Barberton mid-lower Komati Formation type-section, involving mantle plume-crust interaction. The new observations and data indicate that the komatiites erupted as a result of a mantle plume from a hot (>1 600oC) mid-Archaean mantle, in which the earliest volcanic flows were variably affected by crustal contamination during their ascent and eruption. The possibility of incorporation of lower crustal material and/or recycled crust residing in the mantle source region cannot be excluded. This indicates that modern-style plate tectonic processes, such as subduction, may not have been a requirement for the formation of the 3.48 Ga Barberton komatiite suite, with implications for the hydration state, geodynamic processes and secular thermal evolution of the Archaean mantle.


2001 ◽  
Vol 138 (4) ◽  
pp. 371-386 ◽  
Author(s):  
ANDERS LINDH ◽  
ULF BERTIL ANDERSSON ◽  
THOMAS LUNDQVIST ◽  
STEFAN CLAESSON

Gabbro and leucogabbro are volumetrically important rocks in the Nordingrå rapakivi complex, East Central Sweden. Plagioclase, ortho- and clinopyroxenes, and olivine dominate the gabbro. Perthitic orthoclase and quartz are interstitial in relation to the major minerals. The present work is based on 232 major-element and a large number of trace element analyses together with 15 whole rock Sm–Nd isotope analyses of the Nordingrå gabbroic rocks. εNd(T) values are negative, −1.1 to −3.2; the most negative values come from the gabbro. Most rocks are enriched in iron, some extremely enriched; none represent primitive mantle melts. The range of Mg-numbers is the same in the gabbro and the leucogabbro. Plots of the Ni-content vs. the Mg-number are scattered, but there is a positive correlation between these two parameters. The primary mantle-normalized ratios between similar trace elements are normally strongly different from one. Values larger as well as smaller than one are found for the same ratio in different rocks. The rare earth elements are only weakly fractionated with small Eu anomalies, negative for the gabbros and positive for the leucogabbros. The primary magma of the Nordingrå gabbro-anorthosite is thought to have been derived from a mildly depleted mantle source. Variations in the degree of partial melting of a reasonably homogeneous enriched mantle do not explain the observed chemical evolution. Crystal differentiation can account for some geochemical features, especially the Fe-enrichment. Crustal contamination is required by other characteristics as, for example, the negative εNd(T) values and the irregular and sometimes high primary-mantle normalized incompatible trace-element ratios. Al-rich relic material from the formation of the rapakivi granite melt is another source of assimilation. Most probably contaminants are heterogeneous, including undepleted crust (represented, for example, by early Svecofennian and Archaean granitoids), depleted crust (restitic after rapakivi magma extraction), and to some degree the associated rapakivi magma itself. Significant parts of this crust should be Archaean in age.


1991 ◽  
Vol 128 (5) ◽  
pp. 417-435 ◽  
Author(s):  
N. Güleç

AbstractThe isotopic composition of Sr and Nd together with the abundance data for major and trace elements are reported for Tertiary to Quaternary volcanics from a variety of localities in western Turkey. These data are used to evaluate the role of crust–mantle interaction in the petrogenesis of the western Turkish volcanics. The major and trace element chemistry reveals a general change in the nature of volcanism from dominantly calc-alkaline in Tertiary to alkaline in Quaternary times. The calc-alkaline rocks are quartz-normative and comprise andesitic to rhyolitic compositions of Miocene–Pliocene age; the trace element patterns are typical of continental margin volcanics with high Ba/Nb ratios and negative Ti anomalies. The alkaline rocks are nepheline-normative and dominantly Quaternary in age; they are basic in composition, with a change from potassic nature in Miocene–Pliocene to sodic in Quaternary times. Most of the Tertiary alkaline volcanics display trace element patterns similar to those of the calc-alkaline ones, whereas the Quaternary alkaline volcanics have low Ba/Nb ratios without negative Ti anomalies; they resemble intraplate volcanics.The calc-alkaline rocks have high87Sr/86Sr (from 0.705011 to 0.709529) and low143Nd/144Nd ratios (from 0.512294 to 0.512691). With the exception of two Tertiary samples, all the alkaline volcanics plot within the so-called mantle array of the isotope correlation diagram,87Sr/86Sr ratios ranging from 0.703128 to 0.703628 and143Nd/144Nd ratios ranging from 0.512749 to 0.512998. The two Tertiary alkaline samples, with trace element patterns similar to those of the calc-alkaline ones, have considerably higher Sr (0.707741–0.707918) and lower Nd (0.512494–0.512514) isotope compositions. The combined isotope and chemical data suggest the derivation of the western Turkish volcanics from variable mixtures of melts generated in two different mantle regions. The calc-alkaline volcanics were essentially derived from the continental lithospheric or shallow asthenospheric mantle which was contaminated with upper crustal material during earlier subduction events. The generation of the alkaline volcanics was controlled by melts derived from relatively deep, isotopically depleted mantle regions. Most of the volcanics were subjected to contamination at crustal levels, through the operation of an assimilation–fractional crystallization (AFC) process. The nature of contaminant changed from upper crustal in the calc-alkaline to lower crustal in the alkaline volcanics, accompanying the overall decrease in the amount of contamination from about 50% down to about 10%, and broadly paralleling the transition from compressional to extensional tectonics in the region.


1990 ◽  
Vol 13 ◽  
pp. 1-7
Author(s):  
Elson Paiva de Oliveira

Preliminary field relationship and incompatible trace element geochemistry on two bodies of noritic rocks from Uauá area are discussed with the aim of evaluating their metallogenic potential. The rocks show primitive mantle normalized and chondrite normalized patterns very similar to chilled margins and parental magmas to the Bushveld and Insizwa complexes (RSA) which host major platinum group elements deposits. The data suggest the Uauá noritic bodies may be potential for ore mineralisation.


2019 ◽  
Vol 64 (4) ◽  
pp. 395-408
Author(s):  
V. B. Naumov ◽  
V. A. Dorofeeva ◽  
A. V. Girnis ◽  
V. V. Yarmolyuk

As a continuation of our previous study, we estimated the mean contents of volatile, major, and trace components in silicic (>66 wt % SiO2) magmatic melts from main terrestrial geodynamic settings on the basis of our database, which includes (as of middle 2017) more than 1 500 000 determination of 75 elements in melt inclusions and quench glasses from rocks. Among the geodynamic settings are those related to subduction processes (III, island-arc zones originated on oceanic crust and IV, magmatic zones of active continental margins, where continental crust is involved in magma formation) and intracontinent rift and continental hot-spot regions (V). For each geodynamic setting, we calculated the mean contents of elements with confidence limits separately for melt inclusions and groundmass glasses and for the entire data set. Systematic differences were found between the mean compositions of melt inclusions and groundmass glasses from these geodynamic settings. Primitive mantle normalized spider diagrams were constructed for all geodynamic settings. Some ratios of elements and volatile components (H2O/Ce, K2O/Cl, La/Yb, Nb/U, Ba/Rb, Ce/ Pb, etc.) in silicic and mafic melts were compared. Variations in the ratios of various elements to Th, which is one of the most incompatible elements in silicic and mafic melts, were discussed.


2020 ◽  
Vol 139 ◽  
pp. 93-102 ◽  
Author(s):  
MF Van Bressem ◽  
P Duignan ◽  
JA Raga ◽  
K Van Waerebeek ◽  
N Fraijia-Fernández ◽  
...  

Crassicauda spp. (Nematoda) infest the cranial sinuses of several odontocetes, causing diagnostic trabecular osteolytic lesions. We examined skulls of 77 Indian Ocean humpback dolphins Sousa plumbea and 69 Indo-Pacific bottlenose dolphins Tursiops aduncus, caught in bather-protecting nets off KwaZulu-Natal (KZN) from 1970-2017, and skulls of 6 S. plumbea stranded along the southern Cape coast in South Africa from 1963-2002. Prevalence of cranial crassicaudiasis was evaluated according to sex and cranial maturity. Overall, prevalence in S. plumbea and T. aduncus taken off KZN was 13 and 31.9%, respectively. Parasitosis variably affected 1 or more cranial bones (frontal, pterygoid, maxillary and sphenoid). No significant difference was found by gender for either species, allowing sexes to be pooled. However, there was a significant difference in lesion prevalence by age, with immature T. aduncus 4.6 times more likely affected than adults, while for S. plumbea, the difference was 6.5-fold. As severe osteolytic lesions are unlikely to heal without trace, we propose that infection is more likely to have a fatal outcome for immature dolphins, possibly because of incomplete bone development, lower immune competence in clearing parasites or an over-exuberant inflammatory response in concert with parasitic enzymatic erosion. Cranial osteolysis was not observed in mature males (18 S. plumbea, 21 T. aduncus), suggesting potential cohort-linked immune-mediated resistance to infestation. Crassicauda spp. may play a role in the natural mortality of S. plumbea and T. aduncus, but the pathogenesis and population level impact remain unknown.


1990 ◽  
Vol 85 (1-2) ◽  
pp. 19-34 ◽  
Author(s):  
C.J. Hawkesworth ◽  
A.J. Erlank ◽  
P.D. Kempton ◽  
F.G. Waters

2010 ◽  
Vol 18 (4) ◽  
pp. 663-668 ◽  
Author(s):  
Joshua Oluwole Olowoyo ◽  
E. van Heerden ◽  
J. L. Fischer

2021 ◽  
Author(s):  
Loic Le Bras ◽  
Robert Bolhar ◽  
Paul Nex ◽  
Grant Bybee ◽  
Henriette Ueckermann ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
S J Piercey ◽  
J -L Pilote

New high precision lithogeochemistry and Nd and Hf isotopic data were collected on felsic rocks of the Rambler Rhyolite formation from the Ming volcanogenic massive sulphide (VMS) deposit, Baie Verte Peninsula, Newfoundland. The Rambler Rhyolite formation consists of intermediate to felsic volcanic and volcaniclastic rocks with U-shaped primitive mantle normalized trace element patterns with negative Nb anomalies, light rare earth element-enrichment (high La/Sm), and distinctively positive Zr and Hf anomalies relative to surrounding middle rare earth elements (high Zr-Hf/Sm). The Rambler Rhyolite samples have epsilon-Ndt = -2.5 to -1.1 and epsilon-Hft = +3.6 to +6.6; depleted mantle model ages are TDM(Nd) = 1.3-1.5 Ga and TDM(Hf) = 0.9-1.1Ga. The decoupling of the Nd and Hf isotopic data is reflected in epsilon-Hft isotopic data that lies above the mantle array in epsilon-Ndt -epsilon-Hft space with positive ?epsilon-Hft values (+2.3 to +6.2). These Hf-Nd isotopic attributes, and high Zr-Hf/Sm and U-shaped trace element patterns, are consistent with these rocks having formed as slab melts, consistent with previous studies. The association of these slab melt rocks with Au-bearing VMS mineralization, and their FI-FII trace element signatures that are similar to rhyolites in Au-rich VMS deposits in other belts (e.g., Abitibi), suggests that assuming that FI-FII felsic rocks are less prospective is invalid and highlights the importance of having an integrated, full understanding of the tectono-magmatic history of a given belt before assigning whether or not it is prospective for VMS mineralization.


Sign in / Sign up

Export Citation Format

Share Document