Aerodynamic Force Generation in Hovering Flight in a Tiny Insect

AIAA Journal ◽  
2006 ◽  
Vol 44 (7) ◽  
pp. 1532-1540 ◽  
Author(s):  
Mao Sun ◽  
Xin Yu
2002 ◽  
Vol 205 (1) ◽  
pp. 55-70 ◽  
Author(s):  
Mao Sun ◽  
Jian Tang

SUMMARY A computational fluid-dynamic analysis was conducted to study the unsteady aerodynamics of a model fruit fly wing. The wing performs an idealized flapping motion that emulates the wing motion of a fruit fly in normal hovering flight. The Navier–Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow-structure information. Considerable lift can be produced when the majority of the wing rotation is conducted near the end of a stroke or wing rotation precedes stroke reversal (rotation advanced), and the mean lift coefficient can be more than twice the quasi-steady value. Three mechanisms are responsible for the large lift: the rapid acceleration of the wing at the beginning of a stroke, the absence of stall during the stroke and the fast pitching-up rotation of the wing near the end of the stroke. When half the wing rotation is conducted near the end of a stroke and half at the beginning of the next stroke (symmetrical rotation), the lift at the beginning and near the end of a stroke becomes smaller because the effects of the first and third mechanisms above are reduced. The mean lift coefficient is smaller than that of the rotation-advanced case, but is still 80 % larger than the quasi-steady value. When the majority of the rotation is delayed until the beginning of the next stroke (rotation delayed), the lift at the beginning and near the end of a stroke becomes very small or even negative because the effect of the first mechanism above is cancelled and the third mechanism does not apply in this case. The mean lift coefficient is much smaller than in the other two cases.


2009 ◽  
Vol 46 (5) ◽  
pp. 1785-1794 ◽  
Author(s):  
Jr-Ming Miao ◽  
Wei-Hsin Sun ◽  
Chang-Hsien Tai

2021 ◽  
Author(s):  
YeongGyun Ryu

An experimental study on flapping wing flexibility in hovering flight has been conducted to investigate the wing flexibility for insect-inspired flapping Micro Aerial Vehicles (MAVs). Hawkmoth-like wing models, derived from Manduca sexta, were made of Polycarbonate (PC) sheet with a spanwise length of 200 mm and an aspect ratio of 6.18. For the distributions of wing flexibility, the wing thickness was selected as the design variable: rigid wing (3 mm-thick) and flexible wings (2, 1, 0.8, 0.5, 0.35, 0.2, and 0.1 mm-thick). In the experiment, the wing models were constrained to the symmetrical and sinusoidal flapping motions with sweeping and rotating amplitudes of 120° and 90° in water tank with size of 3.5 m×1.0 m×1.1 m. Aerodynamic force and flow structures for flapping the wing were measured using a six-axis force/torque sensor and a high speed camera with a laser using Digital Particle Image Velocimetry (DPIV). To compare the flow structures of flexible wings with rigid wing, they were captured at the same chordwise cross-section as the rigid wing, 50% of wing length. Based on the experimental results, vortices and aerodynamic force. Consequently, the wing with thickness of 0.8 mm has better aerodynamic characteristics than other wings in hovering flight. This finding will be instrumental in identifying the range of wing flexibilities that improves the aerodynamic efficiency for the development of insect-inspired flapping MAVs.


Author(s):  
Alok A. Rege ◽  
Brian H. Dennis ◽  
Kamesh Subbarao

Insect flight comes with lot of intricacies that cannot be explained by conventional aerodynamics. Insects rely on a peculiar high frequency wing flapping mechanism to produce the aerodynamic forces required for sustainable flight. Broad study of this mechanism for producing forces is imperative to attain a reasonably accurate representation of these forces. In this research, sensitivity analysis is performed on the factors governing the aerodynamic force production due to flapping motion of a two-dimensional wing section of a Micro Air Vehicle (MAV). Published results obtained on a wing section of an MAV model by the authors in their previous work are used for preliminary review. The flapping path parameters are nondimensionalized and the moving mesh problem is solved in a numerical flow solver. A thorough sensitivity analysis is done to realize the effects of the flapping wing Reynolds number, Strouhal number, and the absolute angle of attack on the force generation.


Sign in / Sign up

Export Citation Format

Share Document