Towards Virtual Flight in Realistic Environments: A Hybrid Coupled Simulation Method

AIAA Journal ◽  
2020 ◽  
Vol 58 (3) ◽  
pp. 1266-1277 ◽  
Author(s):  
Stefan Zholtovski ◽  
Anton Stephan ◽  
Frank Holzäpfel
2021 ◽  
Vol 1754 (1) ◽  
pp. 012026
Author(s):  
Fan Yang ◽  
Kai Chen ◽  
Shaofeng Qian ◽  
JiangYang Zhan ◽  
Rui Yu ◽  
...  

Author(s):  
Hirotaka Ishioka ◽  
Shoya Ota ◽  
Kosuke Nakasato ◽  
Keiji Onishi ◽  
Makoto Tsubokura

Recently, unsteady aerodynamics has been drawing many attention because it is becoming clear that unsteady aerodynamics have a big effect on running stability, safety and ride comfort of vehicles. In order to estimate unsteady aerodynamics, it is necessary to reproduce the actual running condition including an atmospheric disturbance and vehicle motion. However, it is difficult to investigate the effect of unsteady aerodynamics in the road test because it has a lot of errors in measurement. In this study, a coupled simulation method between the 6DoF motion of a vehicle and aerodynamics was developed for these problems. Large Eddy Simulation (LES) was used to estimate the aerodynamics, and the motion equations of a vehicle was used to estimate vehicle motion. Vehicle motion in aerodynamic simulation was reproduced by using Arbitrary Lagrangian-Eulerian (ALE) method. In addition, sliding mesh method was used to reproduce overtaking and passing motions of two vehicles. By using the methods, aerodynamics and vehicle dynamics simulations are treated interactively (2-way) by exchanging each result at each time step. The 2-way results were compared with the 1-way coupled simulation estimating vehicle motion from aerodynamics results posteriori to investigate how vehicle’s motion itself further affects its aerodynamics during the pass-by and overtaking motions. Our main focus is, by using this method, to study the effect of unsteady aerodynamics on the running stability of a vehicle. The results of 1-way and 2-way coupling analysis showed difference with respect to behavior of a vehicle. It is believed that such differences result in the different aerodynamic forces and moments, which is caused by the vehicle’s posture changes in the 2-way coupling simulation.


Sign in / Sign up

Export Citation Format

Share Document