Mechanism for Increased Viscous Drag over Porous Sheet Acoustic Liners

AIAA Journal ◽  
2020 ◽  
Vol 58 (8) ◽  
pp. 3393-3404
Author(s):  
Christopher Jasinski ◽  
Thomas Corke
Author(s):  
M. F. Stevens ◽  
P. S. Follansbee

The strain rate sensitivity of a variety of materials is known to increase rapidly at strain rates exceeding ∼103 sec-1. This transition has most often in the past been attributed to a transition from thermally activated guide to viscous drag control. An important condition for imposition of dislocation drag effects is that the applied stress, σ, must be on the order of or greater than the threshold stress, which is the flow stress at OK. From Fig. 1, it can be seen for OFE Cu that the ratio of the applied stress to threshold stress remains constant even at strain rates as high as 104 sec-1 suggesting that there is not a mechanism transition but that the intrinsic strength is increasing, since the threshold strength is a mechanical measure of intrinsic strength. These measurements were made at constant strain levels of 0.2, wnich is not a guarantee of constant microstructure. The increase in threshold stress at higher strain rates is a strong indication that the microstructural evolution is a function of strain rate and that the dependence becomes stronger at high strain rates.


2021 ◽  
pp. 1475472X2110238
Author(s):  
Michael G Jones ◽  
Douglas M Nark ◽  
Brian M Howerton

This paper presents results for five uniform and two multizone liners based on data acquired in the NASA Langley Grazing Flow Impedance Tube. Two methods, Prony and CHE, are used to educe the impedance spectra for each of these liners for many test conditions. The Prony method is efficient and generally provides accurate results for uniform liners, but is not well suited for multizone liners. The CHE method supports assessment of both uniform and multizone liners, but is much more computationally expensive. The results from these liners demonstrate the efficacy of both eduction methods, but also clearly demonstrate that sufficient attenuation is required to support accurate impedance eduction. For the liners considered in this study, the data indicate approximately 3 dB attenuation is needed for each zone of a multizone liner in order to ensure quality impedance eduction results. This study was conducted in response to two acoustic liner research challenges in support of a collaboration of multiple national laboratories under the International Forum for Aviation Research.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pierre Hakizimana ◽  
Anders Fridberger

AbstractMammalian hearing depends on sound-evoked displacements of the stereocilia of inner hair cells (IHCs), which cause the endogenous mechanoelectrical transducer channels to conduct inward currents of cations including Ca2+. Due to their presumed lack of contacts with the overlaying tectorial membrane (TM), the putative stimulation mechanism for these stereocilia is by means of the viscous drag of the surrounding endolymph. However, despite numerous efforts to characterize the TM by electron microscopy and other techniques, the exact IHC stereocilia-TM relationship remains elusive. Here we show that Ca2+-rich filamentous structures, that we call Ca2+ ducts, connect the TM to the IHC stereocilia to enable mechanical stimulation by the TM while also ensuring the stereocilia access to TM Ca2+. Our results call for a reassessment of the stimulation mechanism for the IHC stereocilia and the TM role in hearing.


2016 ◽  
Vol 32 (1) ◽  
Author(s):  
Yuehao Luo ◽  
Xia Xu ◽  
Dong Li ◽  
Wen Song

AbstractWith the rapid development of science and technology, increasing research interests have been focused on environment protection, global warming, and energy shortage. At present, reducing friction force as much as possible has developed into an urgent issue. Sharkskin effect has the potential ability to lower viscous drag on the fluid-solid interface in turbulence, and therefore, how to fabricate bio-inspired sharkskin surfaces is progressively becoming the hot topic. In this review, various methods of fabricating drag reduction surfaces covering biological sharkskin morphology are illustrated and discussed systematically, mainly involving direct bio-replicated, synthetic fabricating, bio/micro-rolling, enlarged solvent-swelling, drag reduction additive low-releasing, trans-scale enlarged three-dimensional fabricating, flexible printing, large-proportional shrunken bio-replicating, ultraviolet (UV) curable painting, and stretching deformed methods. The overview has the potential benefits in better acquainting with the recent research status of fabricating sharkskin surfaces covering the biological morphology.


1987 ◽  
Vol 24 (6) ◽  
pp. 1086-1097 ◽  
Author(s):  
Mel R. Stauffer ◽  
Don J. Gendzwill

Fractures in Late Cretaceous to Late Pleistocene sediments in Saskatchewan, eastern Montana, and western North Dakota form two vertical, orthogonal sets trending northeast–southwest and northwest–southeast. The pattern is consistent, regardless of rock type or age (except for concretionary sandstone). Both sets appear to be extensional in origin and are similar in character to joints in Alberta. Modem stream valleys also trend in the same two dominant directions and may be controlled by the underlying fractures.Elevation variations on the sub-Mannville (Early Cretaceous) unconformity form a rectilinear pattern also parallel to the fracture sets, suggesting that fracturing was initiated at least as early as Late Jurassic. It may have begun earlier, but there are insufficient data at present to extend the time of initiation.We interpret the fractures as the result of vertical uplift together with plate motion: the westward drift of North America. The northeast–southwest-directed maximum principal horizontal stress of the midcontinent stress field is generated by viscous drag effects between the North American plate and the mantle. Vertical uplift, erosion, or both together produce a horizontal tensile state in near-surface materials, and with the addition of a directed horizontal stress through plate motion, vertical tension cracks are generated parallel to that horizontal stress (northeast–southwest). Nearly instantaneous elastic rebound results in the production of second-order joints (northwest–southeast) perpendicular to the first. In this manner, the body of rock is being subjected with time to complex alternation of northeast–southwest and northwest–southeast horizontal stresses, resulting in the continuous and contemporaneous production of two perpendicular extensional joint sets.


1978 ◽  
Vol 46 (5) ◽  
pp. 543-545 ◽  
Author(s):  
L. Gunther ◽  
D. L. Weaver

Sign in / Sign up

Export Citation Format

Share Document