Recent developments in fabricating drag reduction surfaces covering biological sharkskin morphology

2016 ◽  
Vol 32 (1) ◽  
Author(s):  
Yuehao Luo ◽  
Xia Xu ◽  
Dong Li ◽  
Wen Song

AbstractWith the rapid development of science and technology, increasing research interests have been focused on environment protection, global warming, and energy shortage. At present, reducing friction force as much as possible has developed into an urgent issue. Sharkskin effect has the potential ability to lower viscous drag on the fluid-solid interface in turbulence, and therefore, how to fabricate bio-inspired sharkskin surfaces is progressively becoming the hot topic. In this review, various methods of fabricating drag reduction surfaces covering biological sharkskin morphology are illustrated and discussed systematically, mainly involving direct bio-replicated, synthetic fabricating, bio/micro-rolling, enlarged solvent-swelling, drag reduction additive low-releasing, trans-scale enlarged three-dimensional fabricating, flexible printing, large-proportional shrunken bio-replicating, ultraviolet (UV) curable painting, and stretching deformed methods. The overview has the potential benefits in better acquainting with the recent research status of fabricating sharkskin surfaces covering the biological morphology.

1996 ◽  
Vol 33 (4-5) ◽  
pp. 233-240 ◽  
Author(s):  
F. S. Goderya ◽  
M. F. Dahab ◽  
W. E. Woldt ◽  
I. Bogardi

A methodology for incorporation of spatial variability in modeling non-point source groundwater nitrate contamination is presented. The methodology combines geostatistical simulation and unsaturated zone modeling for estimating the amount of nitrate loading to groundwater. Three dimensional soil nitrogen variability and 2-dimensional crop yield variability are used in quantifying potential benefits of spatially distributed nitrogen input. This technique, in combination with physical and chemical measurements, is utilized as a means of illustrating how the spatial statistical properties of nitrate leaching can be obtained for different scenarios of fixed and variable rate nitrogen applications.


2019 ◽  
Vol 19 (3) ◽  
pp. 172-196 ◽  
Author(s):  
Ling-Yan Zhou ◽  
Zhou Qin ◽  
Yang-Hui Zhu ◽  
Zhi-Yao He ◽  
Ting Xu

Long-term research on various types of RNAs has led to further understanding of diverse mechanisms, which eventually resulted in the rapid development of RNA-based therapeutics as powerful tools in clinical disease treatment. Some of the developing RNA drugs obey the antisense mechanisms including antisense oligonucleotides, small interfering RNAs, microRNAs, small activating RNAs, and ribozymes. These types of RNAs could be utilized to inhibit/activate gene expression or change splicing to provide functional proteins. In the meantime, some others based on different mechanisms like modified messenger RNAs could replace the dysfunctional endogenous genes to manage some genetic diseases, and aptamers with special three-dimensional structures could bind to specific targets in a high-affinity manner. In addition, the recent most popular CRISPR-Cas technology, consisting of a crucial single guide RNA, could edit DNA directly to generate therapeutic effects. The desired results from recent clinical trials indicated the great potential of RNA-based drugs in the treatment of various diseases, but further studies on improving delivery materials and RNA modifications are required for the novel RNA-based drugs to translate to the clinic. This review focused on the advances and clinical studies of current RNA-based therapeutics, analyzed their challenges and prospects.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


2021 ◽  
Vol 22 (7) ◽  
pp. 3485
Author(s):  
Marta Osrodek ◽  
Michal Wozniak

Despite recent groundbreaking advances in the treatment of cutaneous melanoma, it remains one of the most treatment-resistant malignancies. Due to resistance to conventional chemotherapy, the therapeutic focus has shifted away from aiming at melanoma genome stability in favor of molecularly targeted therapies. Inhibitors of the RAS/RAF/MEK/ERK (MAPK) pathway significantly slow disease progression. However, long-term clinical benefit is rare due to rapid development of drug resistance. In contrast, immune checkpoint inhibitors provide exceptionally durable responses, but only in a limited number of patients. It has been increasingly recognized that melanoma cells rely on efficient DNA repair for survival upon drug treatment, and that genome instability increases the efficacy of both MAPK inhibitors and immunotherapy. In this review, we discuss recent developments in the field of melanoma research which indicate that targeting genome stability of melanoma cells may serve as a powerful strategy to maximize the efficacy of currently available therapeutics.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1145
Author(s):  
Yuan Zhao ◽  
Xuecheng Zhu ◽  
Wei Jiang ◽  
Huilin Liu ◽  
Baoguo Sun

With the rapid development of global industry and increasingly frequent product circulation, the separation and detection of chiral drugs/pesticides are becoming increasingly important. The chiral nature of substances can result in harm to the human body, and the selective endocrine-disrupting effect of drug enantiomers is caused by differential enantiospecific binding to receptors. This review is devoted to the specific recognition and resolution of chiral molecules by chromatography and membrane-based enantioseparation techniques. Chromatographic enantiomer separations with chiral stationary phase (CSP)-based columns and membrane-based enantiomer filtration are detailed. In addition, the unique properties of these chiral resolution methods have been summarized for practical applications in the chemistry, environment, biology, medicine, and food industries. We further discussed the recognition mechanism in analytical enantioseparations and analyzed recent developments and future prospects of chromatographic and membrane-based enantioseparations.


2021 ◽  
Vol 912 ◽  
Author(s):  
Yann Haffner ◽  
Thomas Castelain ◽  
Jacques Borée ◽  
Andreas Spohn

Abstract


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


2019 ◽  
Vol 34 (23) ◽  
pp. 1930011 ◽  
Author(s):  
Cyril Closset ◽  
Heeyeon Kim

We give a pedagogical introduction to the study of supersymmetric partition functions of 3D [Formula: see text] supersymmetric Chern–Simons-matter theories (with an [Formula: see text]-symmetry) on half-BPS closed three-manifolds — including [Formula: see text], [Formula: see text], and any Seifert three-manifold. Three-dimensional gauge theories can flow to nontrivial fixed points in the infrared. In the presence of 3D [Formula: see text] supersymmetry, many exact results are known about the strongly-coupled infrared, due in good part to powerful localization techniques. We review some of these techniques and emphasize some more recent developments, which provide a simple and comprehensive formalism for the exact computation of half-BPS observables on closed three-manifolds (partition functions and correlation functions of line operators). Along the way, we also review simple examples of 3D infrared dualities. The computation of supersymmetric partition functions provides exceedingly precise tests of these dualities.


Sign in / Sign up

Export Citation Format

Share Document