Experimental and numerical study of transonic turbine cascade flow

AIAA Journal ◽  
1996 ◽  
Vol 34 (1) ◽  
pp. 104-109 ◽  
Author(s):  
Tibor Kiss ◽  
Joseph A. Schetz ◽  
Hal L. Moses
Author(s):  
Lucheng Ji ◽  
Jia Yu ◽  
Weiwei Li ◽  
Weilin Yi

The shock waves are important phenomena in transonic turbines, which cause lots of negative effects on the aerodynamic performance. Much of attention had been paid on reducing the strength of the shock waves via modifying turbine cascade geometry, and it is highly preferred to build experiences on the relationship between the cascade aerodynamic performance and the geometric parameters. The paper presents a numerical study on the aerodynamic optimal transonic turbine cascade and its geometry characteristics. Three typical Russia transonic turbine cascades with different design conditions are selected and optimized using adjoint method at three different back pressures, respectively. Thus, the best geometry parameters for optimum aerodynamic performance can be found. Then the key geometry parameters of optimized cascades are extracted and compared with the original ones. Results show that even the best designs by hands could be less efficient than ones by computer-aided optimizations. Some experiences on how to set the key geometry parameters for a best performance are obtained. The reduced shock profiling is applied to the thermal turbomachinery and machine dynamics transonic turbine by using the adjoint method. The performance of the thermal turbomachinery and machine dynamics transonic turbine was increased significantly.


1996 ◽  
Vol 118 (3) ◽  
pp. 529-535 ◽  
Author(s):  
P. W. Giel ◽  
J. R. Sirbaugh ◽  
I. Lopez ◽  
G. J. Van Fossen

Experimental measurements in the inlet of a transonic turbine blade cascade showed unacceptable pitchwise flow nonuniformity. A three-dimensional, Navier–Stokes computational fluid dynamics (CFD) analysis of the imbedded bellmouth inlet in the facility was performed to identify and eliminate the source of the flow nonuniformity. The blockage and acceleration effects of the blades were accounted for by specifying a periodic static pressure exit condition interpolated from a separate three-dimensional Navier–Stokes CFD solution of flow around a single blade in an infinite cascade. Calculations of the original inlet geometry showed total pressure loss regions consistent in strength and location to experimental measurements. The results indicate that the distortions were caused by a pair of streamwise vortices that originated as a result of the interaction of the flow with the imbedded bellmouth. Computations were performed for an inlet geometry that eliminated the imbedded bellmouth by bridging the region between it and the upstream wall. This analysis indicated that eliminating the imbedded bellmouth nozzle also eliminates the pair of vortices, resulting in a flow with much greater pitchwise uniformity. Measurements taken with an installed redesigned inlet verify that the flow nonuniformity has indeed been eliminated.


Author(s):  
Yunfeng Fu ◽  
Fu Chen ◽  
Huaping Liu ◽  
Yanping Song

In this paper, the effect of a novel honeycomb tip on suppressing tip leakage flow in a highly-loaded turbine cascade has been experimentally and numerically studied. The research focuses on the mechanisms of honeycomb tip on suppressing tip leakage flow and affecting the secondary flow in the cascade, as well as the influences of different clearance heights on leakage flow characteristics. In addition, two kinds of local honeycomb tip structures are pro-posed to explore the positive effect on suppressing leakage flow in simpler tip honeycomb structures. Based on the experimental and numerical results, the physical processes of tip leakage flow and its interaction with main flow are analyzed, the following conclusions can be obtained. Honeycomb tip rolls up a number of small vortices and radial jets in regular hexagonal honeycomb cavities, increasing the flow resistance in the clearance and reducing the velocity of leakage flow. As a result, the structure of honeycomb tip not only suppresses the leakage flow effectively, but also has positive effect on reducing the associated losses in cascade by reducing the strength of leakage vortex. Compare to the flat tip cascade at 1%H gap height, the relative leakage flow in honeycomb tip cascade reduces from 3.05% to 2.73%, and the loss at exit section is also decreased by 10.63%. With the increase of the gap height, the tip leakage flow and loss have variations of direct proportion with it, but their growth rates in the honeycomb tip cascade are smaller. Consider the abradable property of the honeycomb seal, a smaller gap height is allowed in the cascade with honeycomb tip, and that means honeycomb tip has better effect on suppressing leakage flow. Two various local honeycomb tip structures has also been discussed. It shows that local raised honeycomb tip has better suppressing leakage flow effect than honeycomb tip, while local concave honeycomb tip has no more effect than honeycomb tip. Compare to flat tip cascade, the leakage flow in honeycomb tip cascade, local concave tip cascade and local raised honeycomb tip cascade decrease by nearly 17.33%, 15.51% and 30.86% respectively, the losses at exit section is reduced by 13.38%, 12% and 28.17% respectively.


Author(s):  
Kai Zhou ◽  
Chao Zhou

In turbines, secondary vortices and tip leakage vortices develop and interact with each other. In order to understand the flow physics of vortices interaction, the effects of incoming vortex on the downstream tip leakage flow are investigated in terms of the aerodynamic performance in a turbine cascade. Experimental, numerical and analytical methods are used. In the experiment, a swirl generator was used upstream near the casing to generate the incoming vortex, which interacted with the tip leakage vortex in the turbine cascade. The swirl generator was located at ten different pitchwise locations to simulate the quasi-steady effects. In the numerical study, a Rankine-like vortex was defined at the inlet of the computational domain to simulate the incoming swirling vortex. Incoming vortices with opposite directions were investigated. The vorticity of the positive incoming swirling vortex has a large vector in the same direction as that of the tip leakage vortex. In the case of the positive incoming swirling vortex, the vortex mixes with the tip leakage vortex to form one vortex near the tip as it transports downstream. The vortices interaction reduces the vorticity of the flow near the tip, as well as the loss by making up for the streamwise momentum within the tip leakage vortex core. In contrast, the negative incoming swirling vortex has little effects on the tip leakage vortex and the loss. As the negative incoming swirling vortex transports downstream, it is separated from the tip leakage vortex and forms two vortices. A triple-vortices-interaction kinetic analytical model and one-dimensional mixing model are proposed to explain the mechanism of vortex interaction on the aerodynamic performance.


Sign in / Sign up

Export Citation Format

Share Document