Study on aerodynamic optimal super/transonic turbine cascade and its geometry characteristics

Author(s):  
Lucheng Ji ◽  
Jia Yu ◽  
Weiwei Li ◽  
Weilin Yi

The shock waves are important phenomena in transonic turbines, which cause lots of negative effects on the aerodynamic performance. Much of attention had been paid on reducing the strength of the shock waves via modifying turbine cascade geometry, and it is highly preferred to build experiences on the relationship between the cascade aerodynamic performance and the geometric parameters. The paper presents a numerical study on the aerodynamic optimal transonic turbine cascade and its geometry characteristics. Three typical Russia transonic turbine cascades with different design conditions are selected and optimized using adjoint method at three different back pressures, respectively. Thus, the best geometry parameters for optimum aerodynamic performance can be found. Then the key geometry parameters of optimized cascades are extracted and compared with the original ones. Results show that even the best designs by hands could be less efficient than ones by computer-aided optimizations. Some experiences on how to set the key geometry parameters for a best performance are obtained. The reduced shock profiling is applied to the thermal turbomachinery and machine dynamics transonic turbine by using the adjoint method. The performance of the thermal turbomachinery and machine dynamics transonic turbine was increased significantly.

Author(s):  
Kai Zhou ◽  
Chao Zhou

In turbines, secondary vortices and tip leakage vortices develop and interact with each other. In order to understand the flow physics of vortices interaction, the effects of incoming vortex on the downstream tip leakage flow are investigated in terms of the aerodynamic performance in a turbine cascade. Experimental, numerical and analytical methods are used. In the experiment, a swirl generator was used upstream near the casing to generate the incoming vortex, which interacted with the tip leakage vortex in the turbine cascade. The swirl generator was located at ten different pitchwise locations to simulate the quasi-steady effects. In the numerical study, a Rankine-like vortex was defined at the inlet of the computational domain to simulate the incoming swirling vortex. Incoming vortices with opposite directions were investigated. The vorticity of the positive incoming swirling vortex has a large vector in the same direction as that of the tip leakage vortex. In the case of the positive incoming swirling vortex, the vortex mixes with the tip leakage vortex to form one vortex near the tip as it transports downstream. The vortices interaction reduces the vorticity of the flow near the tip, as well as the loss by making up for the streamwise momentum within the tip leakage vortex core. In contrast, the negative incoming swirling vortex has little effects on the tip leakage vortex and the loss. As the negative incoming swirling vortex transports downstream, it is separated from the tip leakage vortex and forms two vortices. A triple-vortices-interaction kinetic analytical model and one-dimensional mixing model are proposed to explain the mechanism of vortex interaction on the aerodynamic performance.


2000 ◽  
Vol 123 (3) ◽  
pp. 510-518 ◽  
Author(s):  
D. B. M. Jouini ◽  
S. A. Sjolander ◽  
S. H. Moustapha

The paper presents detailed measurements of the midspan aerodynamic performance of a transonic turbine cascade at off-design conditions. The measurements were conducted for exit Mach numbers ranging from 0.5 to 1.2, and for Reynolds numbers from 4×105 to 106. The profile losses were measured for incidence values of +14.5 deg, +10 deg, +4.5 deg, 0 deg, and −10 deg relative to design. To aid in understanding the loss behavior and to provide other insights into the flow physics, measurements of blade loading, exit flow angles, trailing-edge base pressures, and the axial velocity density ratio (AVDR) were also made. It was found that the profile losses at transonic Mach numbers can be closely related to the base pressure behavior. The losses were also affected by the AVDR.


Author(s):  
D. B. M. Jouini ◽  
S. A. Sjolander ◽  
S. H. Moustapha

The paper presents detailed measurements of the midspan aerodynamic performance of a transonic turbine cascade at off-design conditions. The measurements were conducted for exit Mach numbers ranging from 0.5 to 1.2 and for Reynolds numbers from 4×105 to 106. The profile losses were measured for incidence values of +14.5°, +10°, +4.5°, 0°, and −10° relative to design. To aid in understanding the loss behaviour and to provide other insights into the flow physics, measurements of blade loading, exit flow angles, trailing-edge base pressures, and the Axial Velocity Density Ratio (AVDR) were also made. It was found that the profile losses at transonic Mach numbers can be closely related to the base pressure behaviour. The losses were also affected by the AVDR.


AIAA Journal ◽  
1996 ◽  
Vol 34 (1) ◽  
pp. 104-109 ◽  
Author(s):  
Tibor Kiss ◽  
Joseph A. Schetz ◽  
Hal L. Moses

Author(s):  
Yang Pan ◽  
Qi Yuan ◽  
Gongge Huang ◽  
Guangyu Zhu ◽  
Pu Li

The purpose of this paper is to numerically investigate the effect of blade tip clearance and its structure on the turbine aerodynamic performance and excitation force on blades in a transonic turbine cascade. Hence, circular cascades with flat-tip and squealer-tip blades and eight different tip clearances based on the SNECMA transonic turbine were established and the rotational effect was taking into consideration. The simulations were performed by solving the RANS equations and the SST turbulence model was used. The results show that tip clearance and tip structure have a significant influence on the turbine efficiency and excitation forces. Smaller tip clearance and squealer tip structure can reduce the tip leakage flow and leads to higher turbine efficiency. The tangential blade force varies nonlinearly with tip clearance since the leakage flow significantly changes the static pressure distributions on blade surfaces. Further, the excitation force factor was also calculated and illustrated.


Author(s):  
Santosh Abraham ◽  
Kapil Panchal ◽  
Srinath V. Ekkad ◽  
Wing Ng ◽  
Andrew S. Lohaus ◽  
...  

The paper presents a detailed experimental and numerical study on the effect of endwall contouring in a quasi 2D cascade, operating at transonic conditions. Aerodynamic performance of two contoured endwalls are studied and compared with a baseline (planar) endwall. The first contoured endwall was generated with the goal of reducing secondary losses (Aero-Optimized contoured endwall) and the second endwall was generated with the objective of reduced overall heat transfer to the endwall (HT-optimized contoured endwall). Midspan total pressure loss, secondary flow field and static pressure measurements on the airfoil surface were measured. The cascade exit Mach numbers range from 0.71 to 0.95 and the turning angle of the airfoil is ∼127°. The inlet span of the airfoils was reduced with respect to the outlet span with the intention of obtaining a realistic inlet/exit Mach number that is observed in a real engine. 3D viscous compressible CFD analysis was carried out to study the detailed behavior of the complex flow structures that develop as a result of endwall contouring. A 3% reduction in area averaged losses was achieved at 0.1 Cax downstream of the trailing edge and a 17% reduction in mixed out losses was achieved at 1.0 Cax downstream location with the Aero-Optimized contoured endwall.


2019 ◽  
pp. 46-64 ◽  
Author(s):  
Vladimir V. Klimanov ◽  
Sofiya М. Kazakova ◽  
Anna A. Mikhaylova

The article examines the impact of various socio-economic and financial indicators on the resilience of Russian regions. For each region, the integral index of resilience is calculated, and its correlation dependence with the selected indicators is revealed. The study confirms the relationship between fiscal resilience and socio-economic resilience of the regions. The analysis of panel data for 75 regions from 2007 to 2016 shows that there are significant differences in the dynamics of indicators in different periods. In particular, the degree of exposure to the negative effects of the crises of 2008—2009 and 2014—2015 in non-resilient regions is higher than in resilient ones.


2016 ◽  
Vol 10 (4) ◽  
pp. 231
Author(s):  
Abdekarim Tebbal ◽  
Fethi Saidi ◽  
Boualem Noureddine ◽  
Bachir Imine ◽  
Benameur Hamoudi

Sign in / Sign up

Export Citation Format

Share Document