Tearing Instabilities in Two-Dimensional MHD Turbulence

1990 ◽  
Vol 2 (1) ◽  
pp. 47-60 ◽  
Author(s):  
T. Passot ◽  
H. Politano ◽  
A. Pouquet ◽  
P. L. Sulem

2020 ◽  
Author(s):  
Timofey Zinyakov ◽  
Arakel Petrosyan

<p>Numerical studies of two-dimensional β-plane homogeneous magnetohydrodynamic turbulence are presented. The study of the fundamental properties of such turbulence allows understanding the evolution of various astrophysical objects from the Sun and stars to planetary systems, galaxies, and galaxy clusters. Energy spectra and cascade process in two-dimensional β-plane MHD are studied.</p><p>In this work the equations of two-dimensional magnetohydrodynamics with the Coriolis force in the β-plane approximation are used for the qualitative analysis and numerical simulation of processes in plasma astrophysics. The equations are solved on a square box of edge size 2π with periodic boundary conditions applying a the pseudospectral method using the 2/3 rule for dealiasing. The results of numerical simulation of two-dimensional β-plane MHD turbulence with a spatial resolution of 1024 × 1024 and 4096 × 4096 with different Rossby parameters β and different Reynolds numbers are presented.</p><p>It is found that only unsteady zonal flows with complex temporal dynamics are formed in two-dimensional β-plane magnetohydrodynamic turbulence. It is shown that flow nonstationarity is due to the appearance of isotropic magnetic islands caused by the Lorentz force in the system. The formation of Iroshnikov–Kraichnan spectrum is shown in the early stages of evolution of two-dimensional β-plane magnetohydrodynamic turbulence. The self-similarity of the decay of Iroshnikov–Kraichnan spectrum is studied. On long time scale violation of self-similarity of the decay and formation of Kolmogorov spectrum is discovered. The inverse cascade of kinetic energy, which is characteristic of the detected Kolmogorov spectrum, provides the formation of zonal flows.</p><p>This work was supported by the Russian Foundation for Basic Research (project no. 19-02-00016).</p>


1983 ◽  
Vol 29 (3) ◽  
pp. 525-547 ◽  
Author(s):  
John V. Shebalin ◽  
William H. Matthaeus ◽  
David Montgomery

The development of anisotropy in an initially isotropie spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops through the combined effects of an externally imposed d.c. magnetic field and viscous and resistive dissipation at high wavenumbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wavenumbers.


1998 ◽  
Vol 358 ◽  
pp. 299-333 ◽  
Author(s):  
OLEG ZIKANOV ◽  
ANDRE THESS

The transformation of initially isotropic turbulent flow of electrically conducting incompressible viscous fluid under the influence of an imposed homogeneous magnetic field is investigated using direct numerical simulation. Under the assumption of large kinetic and small magnetic Reynolds numbers (magnetic Prandtl number Pm[Lt ]1) the quasi-static approximation is applied for the computation of the magnetic field fluctuations. The flow is assumed to be homogeneous and contained in a three-dimensional cubic box with periodic boundary conditions. Large-scale forcing is applied to maintain a statistically steady level of the flow energy. It is found that the pathway traversed by the flow transformation depends decisively on the magnetic interaction parameter (Stuart number). If the magnetic interaction number is small the flow remains three-dimensional and turbulent and no detectable deviation from isotropy is observed. In the case of a strong magnetic field (large magnetic interaction parameter) a rapid transformation to a purely two-dimensional steady state is obtained in agreement with earlier analytical and numerical results for decaying MHD turbulence. At intermediate values of the magnetic interaction parameter the system exhibits intermittent behaviour, characterized by organized quasi-two-dimensional evolution lasting several eddy-turnover times, which is interrupted by strong three-dimensional turbulent bursts. This result implies that the conventional picture of steady angular energy transfer in MHD turbulence must be refined. The spatial structure of the steady two-dimensional final flow obtained in the case of large magnetic interaction parameter is examined. It is found that due to the type of forcing and boundary conditions applied, this state always occurs in the form of a square periodic lattice of alternating vortices occupying the largest possible scale. The stability of this flow to three-dimensional perturbations is analysed using the energy stability method.


1982 ◽  
Vol 118 (-1) ◽  
pp. 507 ◽  
Author(s):  
JoëL Sommeria ◽  
René Moreau

2014 ◽  
Vol 761 ◽  
pp. 168-205 ◽  
Author(s):  
Alban Pothérat ◽  
Rico Klein

AbstractMagnetohydrodynamic (MHD) turbulence at low magnetic Reynolds number is experimentally investigated by studying a liquid metal flow in a cubic domain. We focus on the mechanisms that determine whether the flow is quasi-two-dimensional, three-dimensional or in any intermediate state. To this end, forcing is applied by injecting a DC current $I$ through one wall of the cube only, to drive vortices spinning along the magnetic field. Depending on the intensity of the externally applied magnetic field, these vortices extend part or all of the way through the cube. Driving the flow in this way allows us to precisely control not only the forcing intensity but also its dimensionality. A comparison with the theoretical analysis of this configuration singles out the influences of the walls and of the forcing on the flow dimensionality. Flow dimensionality is characterised in several ways. First, we show that when inertia drives three-dimensionality, the velocity near the wall where current is injected scales as $U_{b}\sim I^{2/3}$. Second, we show that when the distance $l_{z}$ over which momentum diffuses under the action of the Lorentz force (Sommeria & Moreau, J. Fluid Mech., vol. 118, 1982, pp. 507–518) reaches the channel width $h$, the velocity near the opposite wall $U_{t}$ follows a similar law with a correction factor $(1-h/l_{z})$ that measures three-dimensionality. When $l_{z}<h$, by contrast, the opposite wall has less influence on the flow and $U_{t}\sim I^{1/2}$. The central role played by the ratio $l_{z}/h$ is confirmed by experimentally verifying the scaling $l_{z}\sim N^{1/2}$ put forward by Sommeria & Moreau ($N$ is the interaction parameter) and, finally, the nature of the three-dimensionality involved is further clarified by distinguishing weak and strong three-dimensionalities previously introduced by Klein & Pothérat (Phys. Rev. Lett., vol. 104 (3), 2010, 034502). It is found that both types vanish only asymptotically in the limit $N\rightarrow \infty$. This provides evidence that because of the no-slip walls, (i) the transition between quasi-two-dimensional and three-dimensional turbulence does not result from a global instability of the flow, unlike in domains with non-dissipative boundaries (Boeck et al. Phys. Rev. Lett., vol. 101, 2008, 244501), and (ii) it does not occur simultaneously at all scales.


2012 ◽  
Vol 703 ◽  
pp. 85-98 ◽  
Author(s):  
David G. Dritschel ◽  
Steven M. Tobias

AbstractIn this paper we introduce a new method for computations of two-dimensional magnetohydrodynamic (MHD) turbulence at low magnetic Prandtl number $\mathit{Pm}= \nu / \eta $. When $\mathit{Pm}\ll 1$, the magnetic field dissipates at a scale much larger than the velocity field. The method we utilize is a novel hybrid contour–spectral method, the ‘combined Lagrangian advection method’, formally to integrate the equations with zero viscous dissipation. The method is compared with a standard pseudo-spectral method for decreasing $\mathit{Pm}$ for the problem of decaying two-dimensional MHD turbulence. The method is shown to agree well for a wide range of imposed magnetic field strengths. Examples of problems for which such a method may prove invaluable are also given.


Sign in / Sign up

Export Citation Format

Share Document