An analytical investigation of the effects of water injection on combustion products and detonation in spark ignition engines

1980 ◽  
Author(s):  
W. BROWN
2020 ◽  
pp. 146808742094085
Author(s):  
Jayesh Khatri ◽  
Nikhil Sharma ◽  
Petter Dahlander ◽  
Lucien Koopmans

Combustion knock is a major barrier to achieving high thermal efficiency in spark ignition engines. Water injection was recently identified as a potential way of overcoming this barrier. To evaluate its general applicability, experiments were performed on a downsized three-cylinder spark ignition engine, varying the humidity of the intake air, the water injection timing, and the engine speed. The minimum quantity of injected water required to maintain a given load (and thus level of engine performance) was determined under each set of tested conditions. The knock-suppressing effects of water injection were found to be related to changes in the fuel–air mixture’s specific heat ratio (kappa) rather than evaporative cooling, and to therefore depend on the total quantity of water in the cylinder rather than the relative humidity per se. The total quantity of water in the cylinder was also shown to be a key determinant of advancement in combustion phasing and particulate emissions under various conditions.


2021 ◽  
Vol 221 ◽  
pp. 106956
Author(s):  
Juye Wan ◽  
Yuan Zhuang ◽  
Yuhan Huang ◽  
Yejian Qian ◽  
Lijun Qian

2021 ◽  
Vol 7 ◽  
pp. 374-379
Author(s):  
Michael Fratita ◽  
Florin Popescu ◽  
Jorge Martins ◽  
F.P. Brito ◽  
Tiago Costa ◽  
...  

2019 ◽  
Vol 20 (10) ◽  
pp. 1089-1100 ◽  
Author(s):  
Tim Franken ◽  
Corinna Netzer ◽  
Fabian Mauss ◽  
Michal Pasternak ◽  
Lars Seidel ◽  
...  

Water injection is investigated for turbocharged spark-ignition engines to reduce knock probability and enable higher engine efficiency. The novel approach of this work is the development of a simulation-based optimization process combining the advantages of detailed chemistry, the stochastic reactor model and genetic optimization to assess water injection. The fast running quasi-dimensional stochastic reactor model with tabulated chemistry accounts for water effects on laminar flame speed and combustion chemistry. The stochastic reactor model is coupled with the Non-dominated Sorting Genetic Algorithm to find an optimum set of operating conditions for high engine efficiency. Subsequently, the feasibility of the simulation-based optimization process is tested for a three-dimensional computational fluid dynamic numerical test case. The newly proposed optimization method predicts a trade-off between fuel efficiency and low knock probability, which highlights the present target conflict for spark-ignition engine development. Overall, the optimization shows that water injection is beneficial to decrease fuel consumption and knock probability at the same time. The application of the fast running quasi-dimensional stochastic reactor model allows to run large optimization problems with low computational costs. The incorporation with the Non-dominated Sorting Genetic Algorithm shows a well-performing multi-objective optimization and an optimized set of engine operating parameters with water injection and high compression ratio is found.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4034
Author(s):  
Paolo Iodice ◽  
Massimo Cardone

Among the alternative fuels existing for spark-ignition engines, ethanol is considered worldwide as an important renewable fuel when mixed with pure gasoline because of its favorable physicochemical properties. An in-depth and updated investigation on the issue of CO and HC engine out emissions related to use of ethanol/gasoline fuels in spark-ignition engines is therefore necessary. Starting from our experimental studies on engine out emissions of a last generation spark-ignition engine fueled with ethanol/gasoline fuels, the aim of this new investigation is to offer a complete literature review on the present state of ethanol combustion in last generation spark-ignition engines under real working conditions to clarify the possible change in CO and HC emissions. In the first section of this paper, a comparison between physicochemical properties of ethanol and gasoline is examined to assess the practicability of using ethanol as an alternative fuel for spark-ignition engines and to investigate the effect on engine out emissions and combustion efficiency. In the next section, this article focuses on the impact of ethanol/gasoline fuels on CO and HC formation. Many studies related to combustion characteristics and exhaust emissions in spark-ignition engines fueled with ethanol/gasoline fuels are thus discussed in detail. Most of these experimental investigations conclude that the addition of ethanol with gasoline fuel mixtures can really decrease the CO and HC exhaust emissions of last generation spark-ignition engines in several operating conditions.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 779
Author(s):  
Ashraf Elfasakhany

Biofuels are receiving increased scientific attention, and recently different biofuels have been proposed for spark ignition engines. This paper presents the state of art of using biofuels in spark ignition engines (SIE). Different biofuels, mainly ethanol, methanol, i-butanol-n-butanol, and acetone, are blended together in single dual issues and evaluated as renewables for SIE. The biofuels were compared with each other as well as with the fossil fuel in SIE. Future biofuels for SIE are highlighted. A proposed method to reduce automobile emissions and reformulate the emissions into new fuels is presented and discussed. The benefits and weaknesses of using biofuels in SIE are summarized. The study established that ethanol has several benefits as a biofuel for SIE; it enhanced engine performance and decreased pollutant emissions significantly; however, ethanol showed some drawbacks, which cause problems in cold starting conditions and, additionally, the engine may suffer from a vapor lock situation. Methanol also showed improvements in engine emissions/performance similarly to ethanol, but it is poisonous biofuel and it has some sort of incompatibility with engine materials/systems; its being miscible with water is another disadvantage. The lowest engine performance was displayed by n-butanol and i-butanol biofuels, and they also showed the greatest amount of unburned hydrocarbons (UHC) and CO emissions, but the lowest greenhouse effect. Ethanol and methanol introduced the highest engine performance, but they also showed the greatest CO2 emissions. Acetone introduced a moderate engine performance and the best/lowest CO and UHC emissions. Single biofuel blends are also compared with dual ones, and the results showed the benefits of the dual ones. The study concluded that the next generation of biofuels is expected to be dual blended biofuels. Different dual biofuel blends are also compared with each other, and the results showed that the ethanol–methanol (EM) biofuel is superior in comparison with n-butanol–i-butanol (niB) and i-butanol–ethanol (iBE).


Sign in / Sign up

Export Citation Format

Share Document