scholarly journals Ethanol/Gasoline Blends as Alternative Fuel in Last Generation Spark-Ignition Engines: A Review on CO and HC Engine Out Emissions

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4034
Author(s):  
Paolo Iodice ◽  
Massimo Cardone

Among the alternative fuels existing for spark-ignition engines, ethanol is considered worldwide as an important renewable fuel when mixed with pure gasoline because of its favorable physicochemical properties. An in-depth and updated investigation on the issue of CO and HC engine out emissions related to use of ethanol/gasoline fuels in spark-ignition engines is therefore necessary. Starting from our experimental studies on engine out emissions of a last generation spark-ignition engine fueled with ethanol/gasoline fuels, the aim of this new investigation is to offer a complete literature review on the present state of ethanol combustion in last generation spark-ignition engines under real working conditions to clarify the possible change in CO and HC emissions. In the first section of this paper, a comparison between physicochemical properties of ethanol and gasoline is examined to assess the practicability of using ethanol as an alternative fuel for spark-ignition engines and to investigate the effect on engine out emissions and combustion efficiency. In the next section, this article focuses on the impact of ethanol/gasoline fuels on CO and HC formation. Many studies related to combustion characteristics and exhaust emissions in spark-ignition engines fueled with ethanol/gasoline fuels are thus discussed in detail. Most of these experimental investigations conclude that the addition of ethanol with gasoline fuel mixtures can really decrease the CO and HC exhaust emissions of last generation spark-ignition engines in several operating conditions.

Author(s):  
R. L. Evans ◽  
J Blaszczyk

The purpose of this study was to obtain a detailed comparison of engine performance and exhaust emissions from natural gas and gasoline fuelled spark ignition engines. Each fuel was tested at both wide-open throttle and two part-load operating conditions over a wide range of air—fuel ratios. The results show that the power output of the engine at a given throttle position was reduced by about 12 per cent when fuelled by natural gas due to displacement of air by the gas. The emission levels for natural gas were lower by from 5 to 50 per cent, depending on the pollutant, compared to gasoline. On an energy basis, both fuels exhibited nearly equal thermal efficiency, except that at very lean air—fuel ratios natural gas showed increased efficiency due to an extension of the lean limit of combustion.


2017 ◽  
Vol 18 (9) ◽  
pp. 951-970 ◽  
Author(s):  
Riccardo Amirante ◽  
Elia Distaso ◽  
Paolo Tamburrano ◽  
Rolf D Reitz

The laminar flame speed plays an important role in spark-ignition engines, as well as in many other combustion applications, such as in designing burners and predicting explosions. For this reason, it has been object of extensive research. Analytical correlations that allow it to be calculated have been developed and are used in engine simulations. They are usually preferred to detailed chemical kinetic models for saving computational time. Therefore, an accurate as possible formulation for such expressions is needed for successful simulations. However, many previous empirical correlations have been based on a limited set of experimental measurements, which have been often carried out over a limited range of operating conditions. Thus, it can result in low accuracy and usability. In this study, measurements of laminar flame speeds obtained by several workers are collected, compared and critically analyzed with the aim to develop more accurate empirical correlations for laminar flame speeds as a function of equivalence ratio and unburned mixture temperature and pressure over a wide range of operating conditions, namely [Formula: see text], [Formula: see text] and [Formula: see text]. The purpose is to provide simple and workable expressions for modeling the laminar flame speed of practical fuels used in spark-ignition engines. Pure compounds, such as methane and propane and binary mixtures of methane/ethane and methane/propane, as well as more complex fuels including natural gas and gasoline, are considered. A comparison with available empirical correlations in the literature is also provided.


2019 ◽  
Vol 26 (3) ◽  
pp. 31-38
Author(s):  
Wojciech Gis ◽  
Maciej Gis ◽  
Piotr Wiśniowski ◽  
Mateusz Bednarski

Abstract Limiting emissions of harmful substances is a key task for vehicle manufacturers. Excessive emissions have a negative impact not only on the environment, but also on human life. A significant problem is the emission of nitrogen oxides as well as solid particles, in particular those up to a diameter of 2.5 microns. Carbon dioxide emissions are also a problem. Therefore, work is underway on the use of alternative fuels to power the vehicle engines. The importance of alternative fuels applies to spark ignition engines. The authors of the article have done simulation tests of the Renault K4M 1.6 16v traction engine for emissions for fuels with a volumetric concentration of bioethanol from 10 to 85 percent. The analysis was carried out for mixtures as substitute fuels – without doing any structural changes in the engine's crankshafts. Emission of carbon monoxide, carbon dioxide, hydrocarbons, oxygen at full throttle for selected rotational speeds as well as selected engine performance parameters such as maximum power, torque, hourly and unit fuel consumption were determined. On the basis of the simulation tests performed, the reasonableness of using the tested alternative fuels was determined on the example of the drive unit without affecting its constructions, in terms of e.g. issue. Maximum power, torque, and fuel consumption have also been examined and compared. Thus, the impact of alternative fuels will be determined not only in terms of emissions, but also in terms of impact on the parameters of the power unit.


Author(s):  
Nicolas Iafrate ◽  
Anthony Robert ◽  
Jean-Baptiste Michel ◽  
Olivier Colin ◽  
Benedicte Cuenot ◽  
...  

Downsized spark ignition engines coupled with a direct injection strategy are more and more attractive for car manufacturers in order to reduce pollutant emissions and increase efficiency. However, the combustion process may be affected by local heterogeneities caused by the interaction between the spray and turbulence. The aim for car manufacturers of such engine strategy is to create, for mid-to-high speeds and mid-up-high loads, a mixture which is as homogeneous as possible. However, although injection occurs during the intake phase, which favors homogeneous mixing, local heterogeneities of the equivalence ratio are still observed at the ignition time. The analysis of the mixture preparation is difficult to perform experimentally because of limited optical accesses. In this context, numerical simulation, and in particular Large Eddy Simulation (LES) are complementary tools for the understanding and analysis of unsteady phenomena. The paper presents the LES study of the impact of direct injection on the mixture preparation and combustion in a spark ignition engine. Numerical simulations are validated by comparing LES results with experimental data previously obtained at IFPEN. Two main analyses are performed. The first one focuses on the fuel mixing and the second one concerns the effect of the liquid phase on the combustion process. To highlight these phenomena, simulations with and without liquid injection are performed and compared.


2019 ◽  
pp. 146808741985910 ◽  
Author(s):  
Guillermo Rubio-Gómez ◽  
Lis Corral-Gómez ◽  
David Rodriguez-Rosa ◽  
Fausto A Sánchez-Cruz ◽  
Simón Martínez-Martínez

In the last few years, increasing concern about the harmful effects of the use of fossil fuels in internal combustion engines has been observed. In addition, the limited availability of crude oil has driven the interest in alternative fuels, especially biofuels. In the context of spark ignition engines, bioalcohols are of great interest owing to their similarities and blend capacities with gasoline. Methanol and ethanol have been widely used, mainly due to their knocking resistance. Another alcohol of great interest is butanol, thanks to its potential of being produced as biofuel and its heat value closer to gasoline. In this study, a comparative study of gasoline–alcohol blend combustion, with up to 20% volume, with neat gasoline has been carried out. A single-cylinder, variable compression ratio, Cooperative Fuel Research-type spark ignition engine has been employed. The comparison is made in terms of fuel conversion efficiency and flame development angle. Relevant information related to the impact in the combustion process of the use of the three main alcohols used in blends with gasoline has been obtained.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1076 ◽  
Author(s):  
Yurii Gutarevych ◽  
Vasyl Mateichyk ◽  
Jonas Matijošius ◽  
Alfredas Rimkus ◽  
Igor Gritsuk ◽  
...  

One of the disadvantages of spark ignition engines, whose power is regulated by throttling, is the increased fuel consumption at low loads and when the engine is idle. The combined method of engine power regulation by switching off the cylinder group and throttling working cylinders is one of the effective ways to improve fuel economy in the above-mentioned modes. This article presents the research results of the combined method of engine power regulation which can be realized by minor structural changes in operating conditions. The method implies the following: at low loads and at idle speed of the engine. Fuel supply to the group of cylinders is switched off with the simultaneous increase of the cyclic fuel supply in the working cylinders. The adequacy of the calculated results has been checked by the indication of operating processes in switched off and working cylinders. The research results of a six-cylinder spark ignition engine with the distributed gasoline injection using the combined power regulation system have been shown. The angles of opening the throttle which provides a non-shock transition from the operation with all cylinders to the operation with the cylinder group switched off have been determined.


Author(s):  
Zhe Wang ◽  
Qilun Zhu ◽  
Robert Prucka ◽  
Michael Prucka ◽  
Hussein Dourra

Spark-ignition engine in-cylinder air charge estimation is important for air-to-fuel ratio (AFR) control, maintaining high after-treatment efficiency, and determination of current engine torque. Current cylinder air charge estimation methodologies generally depend upon either a mass air flow (MAF) sensor or a manifold absolute pressure (MAP) sensor individually. Methods based on either sensor have their own advantages and disadvantages. Some production vehicles are equipped with both MAF and MAP sensors to offer air charge estimation and other benefits. This research proposes several observer-based cylinder air charge estimation methods that take advantage of both MAF and MAP sensors to potentially reduce calibration work while providing acceptable transient and steady-state accuracy with low computational load. This research also compares several common air estimation methods with the proposed observer-based algorithms using steady-state and transient dynamometer tests and a rapid-prototype engine controller. With appropriate tuning, the proposed observer-based methods are able to estimate cylinder air charge mass under different engine operating conditions based on the manifold model and available sensors. Methods are validated and compared based on a continuous tip-in tip-out operating condition.


2019 ◽  
Vol 179 (4) ◽  
pp. 86-92
Author(s):  
Mieczysław DZIUBIŃSKI ◽  
Ewa SIEMIONEK ◽  
Artur DROZD ◽  
Michał ŚCIRKA ◽  
Adam KISZCZAK ◽  
...  

The article discusses the impact of ignition system damage on the emission of toxic subcategories in a spark-ignition internal combustion engine. The aim of the work was to develop an analytical model of ignition system diagnostics, test performance and comparative analysis of the results of simulations and experiments. The model developed allows to analyse the basic parameters of the ignition system affecting the content of toxic substances in the exhaust. Experimental tests were carried out using the MAHA MGT5 exhaust gas analyser for four different combustion engines fueled with petrol at various operating conditions. During the tests, the content of toxic substances in the exhaust gas of a properly working engine and the engine working with damage to the ignition system were registered. The tests will be used to assess the impact of the damage of the spark-ignition engine on the emission of individual components of toxic fumes.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6473
Author(s):  
Stanislaw Szwaja ◽  
Michal Gruca ◽  
Michal Pyrc ◽  
Romualdas Juknelevičius

Investigation of a new type of fuel for the internal combustion engine, which can be successfully used in both the power generation and the automotive industries, is presented in this article. The proposed fuel is a blend of 75% n-butanol and 25% glycerol. The engine tests conducted with this glycerol–butanol blend were focused on the performance, combustion thermodynamics, and exhaust emissions of a spark-ignition engine. A comparative analysis was performed to find potential similarities and differences in the engine fueled with gasoline 95 and the proposed glycerol–butanol blend. As measured, CO exhaust emissions increased, NOx emissions decreased, and UHC emissions were unchanged for the glycerol–butanol blend when compared to the test with sole gasoline. As regards the engine performance and combustion progress, no significant differences were observed. Exhaust temperature remarkably decreased by 3.4%, which contributed to an increase in the indicated mean effective pressure by approximately 4% compared to gasoline 95. To summarize, the proposed glycerol–butanol blend can be directly used as a replacement for gasoline in internal combustion spark-ignition engines.


2021 ◽  
Vol 11 (13) ◽  
pp. 6035
Author(s):  
Luigi Teodosio ◽  
Luca Marchitto ◽  
Cinzia Tornatore ◽  
Fabio Bozza ◽  
Gerardo Valentino

Combustion stability, engine efficiency and emissions in a multi-cylinder spark-ignition internal combustion engines can be improved through the advanced control and optimization of individual cylinder operation. In this work, experimental and numerical analyses were carried out on a twin-cylinder turbocharged port fuel injection (PFI) spark-ignition engine to evaluate the influence of cylinder-by-cylinder variation on performance and pollutant emissions. In a first stage, experimental tests are performed on the engine at different speed/load points and exhaust gas recirculation (EGR) rates, covering operating conditions typical of Worldwide harmonized Light-duty vehicles Test Cycle (WLTC). Measurements highlighted relevant differences in combustion evolution between cylinders, mainly due to non-uniform effective in-cylinder air/fuel ratio. Experimental data are utilized to validate a one-dimensional (1D) engine model, enhanced with user-defined sub-models of turbulence, combustion, heat transfer and noxious emissions. The model shows a satisfactory accuracy in reproducing the combustion evolution in each cylinder and the temperature of exhaust gases at turbine inlet. The pollutant species (HC, CO and NOx) predicted by the model show a good agreement with the ones measured at engine exhaust. Furthermore, the impact of cylinder-by-cylinder variation on gaseous emissions is also satisfactorily reproduced. The novel contribution of present work mainly consists in the extended numerical/experimental analysis on the effects of cylinder-by-cylinder variation on performance and emissions of spark-ignition engines. The proposed numerical methodology represents a valuable tool to support the engine design and calibration, with the aim to improve both performance and emissions.


Sign in / Sign up

Export Citation Format

Share Document