Limitations of power scaling for high energy short wavelength lasers

1987 ◽  
Author(s):  
S. ZELAZNY ◽  
W. RUSHMORE
2019 ◽  
Vol 11 (4) ◽  
pp. 395 ◽  
Author(s):  
Christopher Elvidge ◽  
Mikhail Zhizhin ◽  
Kimberly Baugh ◽  
Feng Hsu ◽  
Tilottama Ghosh

The Visible Infrared Imaging Radiometer Suite (VIIRS) collects low light imaging data at night in five spectral bands. The best known of these is the day/night band (DNB) which uses light intensification for imaging of moonlit clouds in the visible and near-infrared (VNIR). The other four low light imaging bands are in the NIR and short-wave infrared (SWIR), designed for daytime imaging, which continue to collect data at night. VIIRS nightfire (VNF) tests each nighttime pixel for the presence of sub-pixel IR emitters across six spectral bands with two bands each in three spectral ranges: NIR, SWIR, and MWIR. In pixels with detection in two or more bands, Planck curve fitting leads to the calculation of temperature, source area, and radiant heat using physical laws. An analysis of January 2018 global VNF found that inclusion of the NIR and SWIR channels results in a doubling of the VNF pixels with temperature fits over the detection numbers involving the MWIR. The addition of the short wavelength channels extends detection limits to smaller source areas across a broad range of temperatures. The VIIRS DNB has even lower detection limits for combustion sources, reaching 0.001 m2 at 1800 K, a typical temperature for a natural gas flare. Comparison of VNF tallies and DNB fire detections in a 2015 study area in India found the DNB had 15 times more detections than VNF. The primary VNF error sources are false detections from high energy particle detections (HEPD) in space and radiance saturation on some of the most intense events. The HEPD false detections are largely eliminated in the VNF output by requiring multiband detections for the calculation of temperature and source size. Radiance saturation occurs in about 1% of the VNF detections and occurs primarily in the M12 spectral band. Inclusion of the radiances affected by saturation results in temperature and source area calculation errors. Saturation is addressed by identifying the presence of saturation and excluding those radiances from the Planck curve fitting. The extremely low detection limits for the DNB indicates that a DNB fire detection algorithm could reveal vast numbers of combustion sources that are undetectable in longer wavelength VIIRS data. The caveats with the DNB combustion source detection capability is that it should be restricted to pixels that are outside the zone of known VIIRS detected electric lighting.


2019 ◽  
Vol 58 (29) ◽  
pp. 8126
Author(s):  
Frédéric Schwenger ◽  
Norbert Scherer-Negenborn ◽  
Katrin Braesicke

1975 ◽  
Author(s):  
C. O. Beasley, Jr. ◽  
J. G. Lominadze ◽  
A. B. Mikhailovskii

MRS Bulletin ◽  
1986 ◽  
Vol 11 (3) ◽  
pp. 46-47
Author(s):  
Richard F. Haglund

Damage to optical materials under intense photon irradiation has always been a major problem in the design and operation of high-energy and high-average-power lasers. In short-wavelength lasers, operating at visible and ultraviolet wavelengths, the problem appears to be especially acute; presently attainable damage thresholds seriously compromise the engineering design of laser windows and mirrors, pulsed power trains and oscillator-amplifier systems architecture. Given the present interest in ultraviolet excimer lasers and in short-pulse, high-power free-electron lasers operating at visible and shorter wavelengths, the “optical damage problem” poses a scientific and technological challenge of significantdimensions. The solution of this problem even has significant implications outside the realm of lasers, for example, in large space-borne systems (such as the Hubble Telescope) exposed to intense ultraviolet radiation.The dimensions of the problem are illustrated by the Large-Aperture krypton-fluoride laser amplifier Module (LAM) shown schematically in Figure 1. This device, now operating at the Los Alamos National Laboratory, is typical of current and planned large excimer lasers for fusion applications. The LAM has an active volume of some 2 m3, and optical surfaces (resonator mirror and windows) exceeding 1 m2 in size; the fabrication of these optical elements was the most expensive and time-consuming single item in the construction of the laser. During laser operation, a population inversion in an Ar-Kr-F2 mix ture is created through electron-beam excitation of the laser gas by two 400 kA beams of 650 keV electrons from a cold cathode discharge. The electron trajectories in the gas are constrained by a 4 kG magnetic field transverse to the optical axis produced by a pair of large Helmholtzcoils.


Author(s):  
Hu Xiao ◽  
Hanwei Zhang ◽  
Rumao Tao ◽  
Xiaolin Wang ◽  
Yanxing Ma ◽  
...  

2009 ◽  
Vol 27 (3) ◽  
pp. 379-391 ◽  
Author(s):  
A. Adonin ◽  
V. Turtikov ◽  
A. Ulrich ◽  
J. Jacoby ◽  
D.H.H. Hoffmann ◽  
...  

AbstractThe high energy loss of heavy ions in matter as well as the small angular scattering makes heavy ion beams an excellent tool to produce almost cylindrical and homogeneously excited volumes in matter. This aspect can be used to pump short wavelength lasers. For the first time, a beam of heavy ions was used to pump a short wavelength gas laser in an experiment performed at the GSI ion accelerator facility in December 2005. In this experiment, the well-known KrF* excimer laser was pumped with an intense uranium beam. Pulses of an uranium beam compressed down to 110 ns (full width at half maximum) with initial particle energy of 250 MeV per nucleon were stopped inside a gas laser cell. A mixture of an excimer laser premix gas (95.5%Kr + 0.5%F2) and a buffer gas (Ar) in different proportions was used as the laser gas. The maximum beam intensity reached in the experiment was 2.5 × 109particles per pulse, which resulted in 34 J/g specific energy deposited in the laser gas. The laser effect on the transition at λ = 248 nm has been successfully demonstrated by various independent methods. There, the laser threshold was reached with a beam intensity of 1.2 × 109particles per pulse, and the energy of the laser pulse of about 2 mJ was measured for an ion beam intensity of 2 × 109particles per pulse. As a next step, it is planned to reduce the laser wavelength down to the vacuum ultraviolet spectral region, and to proceed to the excimer lasers of the pure rare gases. The perspectives for such experiments are discussed and the detailed estimations for Xe and Kr cases are given. We believe that the use of heavy ion beams as a pumping source may lead to new pumping schemes on the higher lying level transitions and considerably shorter wavelengths, which rely on the high cross sections for multiple ionization of the target species.


2003 ◽  
Vol 45 (7) ◽  
pp. 1087-1093 ◽  
Author(s):  
J Wo owski ◽  
J Badziak ◽  
F P Boody ◽  
S Gammino ◽  
H Hora ◽  
...  

1984 ◽  
Vol 75 ◽  
pp. 599-602
Author(s):  
T.V. Johnson ◽  
G.E. Morfill ◽  
E. Grun

A number of lines of evidence suggest that the particles making up the E-ring are small, on the order of a few microns or less in size (Terrile and Tokunaga, 1980, BAAS; Pang et al., 1982 Saturn meeting; Tucson, AZ). This suggests that a variety of electromagnetic and plasma affects may be important in considering the history of such particles. We have shown (Morfill et al., 1982, J. Geophys. Res., in press) that plasma drags forces from the corotating plasma will rapidly evolve E-ring particle orbits to increasing distance from Saturn until a point is reached where radiation drag forces acting to decrease orbital radius balance this outward acceleration. This occurs at approximately Rhea's orbit, although the exact value is subject to many uncertainties. The time scale for plasma drag to move particles from Enceladus' orbit to the outer E-ring is ~104yr. A variety of effects also act to remove particles, primarily sputtering by both high energy charged particles (Cheng et al., 1982, J. Geophys. Res., in press) and corotating plasma (Morfill et al., 1982). The time scale for sputtering away one micron particles is also short, 102 - 10 yrs. Thus the detailed particle density profile in the E-ring is set by a competition between orbit evolution and particle removal. The high density region near Enceladus' orbit may result from the sputtering yeild of corotating ions being less than unity at this radius (e.g. Eviatar et al., 1982, Saturn meeting). In any case, an active source of E-ring material is required if the feature is not very ephemeral - Enceladus itself, with its geologically recent surface, appears still to be the best candidate for the ultimate source of E-ring material.


Sign in / Sign up

Export Citation Format

Share Document