scholarly journals Propagation of high frequency jet noise using geometric acoustics

Author(s):  
A. KHAVARAN ◽  
E. KREJSA
Author(s):  
Philip Mc Laughlin ◽  
Rod Self ◽  
Christopher Powles ◽  
Christopher Wrighton ◽  
Paul Strange ◽  
...  

2018 ◽  
Vol 17 (1-2) ◽  
pp. 135-158 ◽  
Author(s):  
Michael J Doty ◽  
Thomas F Brooks ◽  
Casey L Burley ◽  
Christopher J Bahr ◽  
Dennis S Pope

One approach toward achieving NASA's aggressive N+2 noise goal of 42 EPNdB cumulative margin below Stage 4 is through the use of novel vehicle configurations like the hybrid wing body. Jet noise measurements from a hybrid wing body acoustic test in the NASA Langley 14- by 22-Foot Subsonic Tunnel are described. Two dual-stream, heated Compact Jet Engine Simulator units are mounted underneath the inverted hybrid wing body model on a traversable support to permit measurement of varying levels of shielding provided by the fuselage. Both an axisymmetric and low noise chevron nozzle set are investigated in the context of shielding. The unshielded chevron nozzle set shows 1–2 dB of source noise reduction (relative to the unshielded axisymmetric nozzle set) with some penalties at higher frequencies. Shielding of the axisymmetric nozzles shows up to 6.5 dB of reduction at high frequency. The combination of shielding and low noise chevrons shows benefits beyond the expected additive benefits of the two, up to 10 dB, due to the effective migration of the jet source peak noise location upstream for increased shielding effectiveness. Jet noise source maps from phased array results processed with the deconvolution approach for the mapping of acoustic sources algorithm reinforce these observations.


2019 ◽  
Vol 60 (12) ◽  
Author(s):  
Benshuai Lyu ◽  
Ann P. Dowling

Abstract Jet noise remains a significant aircraft noise contributor, and for modern high-bypass-ratio aero-engines the strong interaction between the jet and aircraft wing leads to intensified installed jet noise. An experiment is carried out in this paper to study the effects of lobed nozzles on installed jet noise. It is found that the lobed nozzles, compared to round nozzles, have similar effects on installed jet noise for all the plate positions and Mach numbers tested. On the shielded side of the plate, the use of lobed nozzles leads to a noise reduction in the intermediate- and high-frequency regimes, which is thought to be due to a combination of enhanced jet mixing and more effective shielding effects by the flat plate. On the reflected side of the plate, noise reduction is only achieved in the intermediate frequency range; the little noise reduction or a slight noise increase observed in the high-frequency regime is likely due to enhanced jet mixing. On both sides of the plates, little noise reduction is achieved for the low-frequency noise due to the scattering of jet instability waves. This is likely to be caused by the fact that lobed nozzles cause negligible change to the dominant mode 0 (axisymmetric) jet instability waves. That the jet mean flow quickly becomes axisymmetric downstream of the jet exit could also play a role. Graphic abstract


1976 ◽  
Vol 74 (2) ◽  
pp. 193-208 ◽  
Author(s):  
Thomas F. Balsa

The purpose of the present paper is to derive expressions for the pressure fields of various high frequency convected singularities immersed in a unidirectional sheared flow. These expressions include the simultaneous effects of fluid and source convection and refraction. These results are then combined to predict the far-field directivity of cold round jets. It is found that the agreement between experiment and the present theory is quite good at a source Strouhal number of unity but that this agreement deteriorates as the source frequency is increased. Our theoretical results show the explicit form of the ‘refraction integral’ and that convective amplification for the pressure of a quadrupole is increased by a factor of (1 —MJcos Θ)−1over the classical results, whereMJis the jet Mach number and Θ is the angle from the jet axis. Thus acoustic/mean-flow interaction not only implies refraction but also additional convective amplification duenotto source convection but to fluid motion.


2014 ◽  
Vol 1078 ◽  
pp. 183-186 ◽  
Author(s):  
Jing Yu He ◽  
Ying Bo Xu

The experimental analysis is conducted for jet noise reduction of separate flow chevron pylon-based nozzles at takeoff condition. The experimental results indicate that the pylon makes a noise reduction at low-frequency but produces an increase at high-frequency, together with an overall sound pressure reduction below the pylon. Compared to chevron nozzle without pylon, the adding of a pylon reduces noise benefit of chevron nozzles found in the isolated nozzle without a pylon. The best low-frequency noise reduction is located below the pylon where peak noise reduction is as high as about 1.3dB on frequency spectrum.


Author(s):  
W. E. Lee ◽  
A. H. Heuer

IntroductionTraditional steatite ceramics, made by firing (vitrifying) hydrous magnesium silicate, have long been used as insulators for high frequency applications due to their excellent mechanical and electrical properties. Early x-ray and optical analysis of steatites showed that they were composed largely of protoenstatite (MgSiO3) in a glassy matrix. Recent studies of enstatite-containing glass ceramics have revived interest in the polymorphism of enstatite. Three polymorphs exist, two with orthorhombic and one with monoclinic symmetry (ortho, proto and clino enstatite, respectively). Steatite ceramics are of particular interest a they contain the normally unstable high-temperature polymorph, protoenstatite.Experimental3mm diameter discs cut from steatite rods (∼10” long and 0.5” dia.) were ground, polished, dimpled, and ion-thinned to electron transparency using 6KV Argon ions at a beam current of 1 x 10-3 A and a 12° angle of incidence. The discs were coated with carbon prior to TEM examination to minimize charging effects.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


Sign in / Sign up

Export Citation Format

Share Document