A nonlinear model for aircraft brake squeal analysis. II - Stability analysis and parametric studies

Author(s):  
James Gordon ◽  
Steven Liu ◽  
M. Ozbek
1998 ◽  
Vol 35 (4) ◽  
pp. 631-636 ◽  
Author(s):  
James T. Gordon ◽  
Steven Y. Liu ◽  
M. Akif Ozbek

2014 ◽  
Vol 11 (7) ◽  
pp. 1817-1831 ◽  
Author(s):  
Y. P. Wang ◽  
B. C. Chen ◽  
W. R. Wieder ◽  
M. Leite ◽  
B. E. Medlyn ◽  
...  

Abstract. A number of nonlinear models have recently been proposed for simulating soil carbon decomposition. Their predictions of soil carbon responses to fresh litter input and warming differ significantly from conventional linear models. Using both stability analysis and numerical simulations, we showed that two of those nonlinear models (a two-pool model and a three-pool model) exhibit damped oscillatory responses to small perturbations. Stability analysis showed the frequency of oscillation is proportional to √(ϵ−1−1) Ks/Vs in the two-pool model, and to √(ϵ−1−1) Kl/Vl in the three-pool model, where ϵ is microbial growth efficiency, Ks and Kl are the half saturation constants of soil and litter carbon, respectively, and /Vs and /Vl are the maximal rates of carbon decomposition per unit of microbial biomass for soil and litter carbon, respectively. For both models, the oscillation has a period of between 5 and 15 years depending on other parameter values, and has smaller amplitude at soil temperatures between 0 and 15 °C. In addition, the equilibrium pool sizes of litter or soil carbon are insensitive to carbon inputs in the nonlinear model, but are proportional to carbon input in the conventional linear model. Under warming, the microbial biomass and litter carbon pools simulated by the nonlinear models can increase or decrease, depending whether ϵ varies with temperature. In contrast, the conventional linear models always simulate a decrease in both microbial and litter carbon pools with warming. Based on the evidence available, we concluded that the oscillatory behavior and insensitivity of soil carbon to carbon input are notable features in these nonlinear models that are somewhat unrealistic. We recommend that a better model for capturing the soil carbon dynamics over decadal to centennial timescales would combine the sensitivity of the conventional models to carbon influx with the flexible response to warming of the nonlinear model.


2005 ◽  
Vol 293-294 ◽  
pp. 409-416 ◽  
Author(s):  
N. Lesaffre ◽  
Jean Jacques Sinou ◽  
F. Thouverez

In any high-performance turbo-machinery, instability and damage are commonly occurring problems. The aim of this paper is to present a stability analysis of a fully-bladed flexible rotor. The flexural vibrations of the blades as well as those of the shaft are considered; the energetic approach used includes the effect of the rotational inertia. A stability detection method, bringing loci separation phenomena and coalescence, in case of an asymmetric rotor, to the fore, is made in order to determine a parametric domain where turbomachinery cannot encounter damage. Moreover, extensive parametric studies including for instance the length and the stagger angle of the blades are presented in order to obtain robust criteria for stable and unstable areas prediction. Finally, rotor/stator contact is introduced and the effect of the radial load acting on the blades when rubbing against a casing is considered.


Author(s):  
Jörg Wauer ◽  
Jürgen Heilig

Abstract The dynamics of a nonlinear car disc brake model is investigated and compared with a simplified linear model. The rotating brake disc is approximated by a rotating ring. The brake pad is modeled as a point mass which is in contact with the rotating ring and visco-elastically suspended in axial and circumferential direction. The stability analysis for the nonlinear model is performed by a numerical evaluation of the top Lyapunov-exponent. Several parameter studies for the nonlinear model are discussed. It is shown that dynamic instabilities of the nonlinear model are estimated at subcritical rotating speeds lower than 10% of the critical speed. Further, the sensitivity of the nonlinear model to the initial conditions and the stiffness ratios is demonstrated.


Author(s):  
Marcus Neubauer ◽  
Robert Oleskiewicz

Due to increased interest in comfort features, considerable effort is spent by brake manufacturers in order to suppress brake squeal. This process can be shortened by eliminating the remaining squealing with shunted piezoceramics that are embedded into the brake system. The piezoceramic offers the unique ability to convert mechanical energy into electrical energy and vice versa. The damping performance is determined by the connected shunt. This paper presents a multibody system of a brake, which is capable to reproduce the important features of brake squeal. It includes the dynamics of a piezoceramic that is shunted with a passive LR shunt or a negative capacitance LRC shunt. Analytical stability analysis are carried out to obtain optimal shunt parameters. The performance increase with a negative capacitance is studied in detail. The simulations are validated with measurements on an automotive disc brake.


Sign in / Sign up

Export Citation Format

Share Document