Dynamics and Stability of a Nonlinear Brake Model
Abstract The dynamics of a nonlinear car disc brake model is investigated and compared with a simplified linear model. The rotating brake disc is approximated by a rotating ring. The brake pad is modeled as a point mass which is in contact with the rotating ring and visco-elastically suspended in axial and circumferential direction. The stability analysis for the nonlinear model is performed by a numerical evaluation of the top Lyapunov-exponent. Several parameter studies for the nonlinear model are discussed. It is shown that dynamic instabilities of the nonlinear model are estimated at subcritical rotating speeds lower than 10% of the critical speed. Further, the sensitivity of the nonlinear model to the initial conditions and the stiffness ratios is demonstrated.