Flight control performance enhancement avoiding aircraft identification

2001 ◽  
Author(s):  
B. Gimonet ◽  
S. Prudhomme
2021 ◽  
pp. 107754632110501
Author(s):  
Ji-Won Lee ◽  
Nguyen Xuan-Mung ◽  
Ngoc Phi Nguyen ◽  
Sung Kyung Hong

In recent years, the boom of the quadcopter industry resulted in a broad range of real-world applications which highlighted the urgent need to improve quadcopter control quality. Typically, external disturbances, such as wind, parameter uncertainties caused by payload variations, or the ground effect, can severely degrade the quadcopter’s altitude control performance. Meanwhile, widely used controllers like the proportional-integral-derivative control cannot guarantee control performance when the system is critically affected by factors that exhibit a high degree of variability with time. In this paper, an adaptive control algorithm is proposed to improve quadcopter altitude tracking performance in the presence of both the ground effect and a time-varying payload. First, we derive an adaptive altitude control algorithm using the sliding mode control technique to account for these uncertainties in the quadcopter dynamics model. Second, we apply Lyapunov theory to analyze the stability of the closed-loop system. Finally, we conduct several numerical simulations and experiments to validate the effectiveness of the proposed method.


2017 ◽  
Vol 79 (6) ◽  
Author(s):  
Andi Adriansyah ◽  
Shamsudin H. M. Amin ◽  
Anwar Minarso ◽  
Eko Ihsanto

The rapid development of microprocessor, electrical, sensors and advanced control technology make a quadrotor fast expansion. Unfortunately, a quadrotor is unstable and impossible to fly in fully open loop system. PID controller is one of methodology that has been proposed to control the flight control system. Unfortunately, adjustment of PID parameters for robust control performance is not easy and still problems. The paper proposed a flight controller system based on a PID controller. The PID parameters are tuned automatically using Particle Swarm Optimization (PSO). Objective of this method is to improve the flight control system performance. Several experiments have been performed. According to these experiments the proposed system able to generate optimal and reliable PID parameters for robust flight controller. The system also has 41.57 % improvement in settling time response.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Leticia Cervantes ◽  
Oscar Castillo ◽  
Denisse Hidalgo ◽  
Ricardo Martinez-Soto

We propose to use an approach based on fuzzy logic for the adaptation of gap generation and mutation probability in a genetic algorithm. The performance of this method is presented with the benchmark problem of flight control and results show how it can decrease the error during the flight of an airplane using fuzzy logic for some parameters of the genetic algorithm. In this case of study, we use fuzzy systems for adapting two parameters of the genetic algorithm to improve the design of a type 2 fuzzy controller and enhance its performance to achieve flight control. Finally, a statistical test is presented to prove the performance enhancement in the application using fuzzy adaptation in the genetic algorithm. It is important to mention that not only is this idea for control problems but also it can be used in pattern recognition and many different problems.


1994 ◽  
Vol 116 (3) ◽  
pp. 429-436 ◽  
Author(s):  
A. W. Lee ◽  
J. K. Hedrick

This paper examines the performance enhancement of a statically unstable aircraft subject to the input and state constraints. Under control saturation, i/o linearizability is destroyed and the state trajectories may not be attracted to the sliding surface. If the reference signals are sufficiently large and the zero-dynamics is lightly damped, the i/o linearizing control may become unreasonably large in magnitude, making the closed-loop system susceptible to the damaging effects of control saturation. In addition to performance degradations such as increased tracking errors, control saturation can drive the closed-loop system to instability. In this paper, a new design method called approximate i/o linearization is presented to enhance the performance of the SISO longitudinal flight control problem under saturation. The new approximate i/o linearization law is obtained by solving a pointwise minimization problem. The function to be minimized consists of a surface whose relative degree is one, its derivative, and weighted square of the input u. The advantages of the approximate i/o linearization is that the adverse effects of control saturation can be minimized by properly selecting the weight on the usage of the control. The only requirement for the new technique is that the original plant be locally i/o linearizable. Thus approximate i/o linearization does not impose additional strict requirements on the plant. In the remaining sections of the paper, stability and bounded tracking properties of the approximate i/o linearization are proven. Finally, a longitudinal flight control problem is used to demonstrate the application of approximate i/o linearization.


Sign in / Sign up

Export Citation Format

Share Document