Improving Genetic Algorithm Efficiency with an Artificial Neural Network for Optimization of Low Reynolds Number Airfoils

Author(s):  
Miles Bellman ◽  
Joseph Straccia ◽  
Brandon Morgan ◽  
Katherine Maschmeyer ◽  
Ramesh Agarwal
Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 35
Author(s):  
Abu Bakar ◽  
Ke Li ◽  
Haobo Liu ◽  
Ziqi Xu ◽  
Marco Alessandrini ◽  
...  

The airfoil is the prime component of flying vehicles. For low-speed flights, low Reynolds number airfoils are used. The characteristic of low Reynolds number airfoils is a laminar separation bubble and an associated drag rise. This paper presents a framework for the design of a low Reynolds number airfoil. The contributions of the proposed research are twofold. First, a convolutional neural network (CNN) is designed for the aerodynamic coefficient prediction of low Reynolds number airfoils. Data generation is discussed in detail and XFOIL is selected to obtain aerodynamic coefficients. The performance of the CNN is evaluated using different learning rate schedulers and adaptive learning rate optimizers. The trained model can predict the aerodynamic coefficients with high accuracy. Second, the trained model is used with a non-dominated sorting genetic algorithm (NSGA-II) for multi-objective optimization of the low Reynolds number airfoil at a specific angle of attack. A similar optimization is performed using NSGA-II directly calling XFOIL, to obtain the aerodynamic coefficients. The Pareto fronts of both optimizations are compared, and it is concluded that the proposed CNN can replicate the actual Pareto in considerably less time.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Mohammad Mehdi Arab ◽  
Abbas Yadollahi ◽  
Maliheh Eftekhari ◽  
Hamed Ahmadi ◽  
Mohammad Akbari ◽  
...  

Author(s):  
Sandip K Lahiri ◽  
Kartik Chandra Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and genetic algorithm technique (ANN-GA) for efficient tuning of ANN meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN-GA method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters.


Sign in / Sign up

Export Citation Format

Share Document