Natural Laminar Flow Testing in High Unit Reynolds Number Facilities

Author(s):  
Jurgen Quest ◽  
Andres Garzon
1965 ◽  
Vol 69 (653) ◽  
pp. 344-345 ◽  
Author(s):  
M. R. Head

It is commonly stated in the literature on laminar flow control (see, for example, ref. 1) that the important parameter controlling the height of tolerable roughness is the Reynolds number per foot, or unit Reynolds number, Vh; provided this parameter is the same in any two cases (which are closely geometrically similar) then it is assumed that the tolerable roughness height will also be similar. It is the object of the present note to point out that this is true only in very restricted circumstances and that in general the actual physical scale is also of considerable importance, as the following shows.


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Jing Li ◽  
Cong Wang ◽  
Huiting Bian

The position and size of laminar separation bubble on airfoil surfaces exert a profound impact on the efficiency of transonic natural-laminar-flow airfoil at low Reynolds number. Based on the particle swarm algorithm, an optimization methodology in the current work would be established with the aim of designing a high and robust performance transonic natural-laminar-flow airfoil at low Reynolds number. This methodology primarily includes two design processes: a traditional deterministic optimization at on-design point and a multi-objective of uncertainty-based optimization. First, a multigroup cooperative particle swarm optimization was used to obtain the optimal deterministic solution. The crowing distance multi-objective particle swarm optimization and the non-intrusive polynomial chaos expansion method were then adopted to determinate the Pareto-optimal front of uncertainty-based optimization. Additionally, the γ−Re¯θt transition model was employed to predict the laminar-turbulent transition. Regarding to the established optimization methodology, a propeller tip airfoil of solar energy unmanned aerial vehicle was finally designed. During optimization processes, the minimized pressure drag was particularly chosen as the optimization objective, while the friction drag increment served as a constraint condition. The deterministic results indicate that the optimized airfoil has a good ability to control the separation and reattachment positions, and the pressure drag can be greatly reduced when the laminar separation bubble is weakened. The multi-objective results show that the uncertainty-based optimized airfoil possesses a significant robust performance by considering the uncertainty of Mach number. The findings evidently demonstrate that the proposed optimization methodology and mathematical model are valuable tools to design a high-efficiency airfoil for the propeller tip.


AIAA Journal ◽  
2014 ◽  
Vol 52 (6) ◽  
pp. 1294-1306 ◽  
Author(s):  
Yoshine Ueda ◽  
Kenji Yoshida ◽  
Kisa Matsushima ◽  
Hiroaki Ishikawa

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Blanke ◽  
Markus Hagenkamp ◽  
Bernd Döring ◽  
Joachim Göttsche ◽  
Vitali Reger ◽  
...  

AbstractPrevious studies optimized the dimensions of coaxial heat exchangers using constant mass flow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar flow types. In contrast, in this study, flow conditions in the circular ring are kept constant (a set of fixed Reynolds numbers) during optimization. This approach ensures fixed flow conditions and prevents inappropriately high or low mass flow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic effort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass flow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefficients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy difference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy flux and hydraulic effort. The Reynolds number in the circular ring is instead of the mass flow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar flow and 60% for turbulent flow scenarios. Net-exergetic optimization shows a predominant influence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the flow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.


2019 ◽  
Vol 30 (7) ◽  
pp. 3827-3842
Author(s):  
Samer Ali ◽  
Zein Alabidin Shami ◽  
Ali Badran ◽  
Charbel Habchi

Purpose In this paper, self-sustained second mode oscillations of flexible vortex generator (FVG) are produced to enhance the heat transfer in two-dimensional laminar flow regime. The purpose of this study is to determine the critical Reynolds number at which FVG becomes more efficient than rigid vortex generators (RVGs). Design/methodology/approach Ten cases were studied with different Reynolds numbers varying from 200 to 2,000. The Nusselt number and friction coefficients of the FVG cases are compared to those of RVG and empty channel at the same Reynolds numbers. Findings For Reynolds numbers higher than 800, the FVG oscillates in the second mode causing a significant increase in the velocity gradients generating unsteady coherent flow structures. The highest performance was obtained at the maximum Reynolds number for which the global Nusselt number is improved by 35.3 and 41.4 per cent with respect to empty channel and rigid configuration, respectively. Moreover, the thermal enhancement factor corresponding to FVG is 72 per cent higher than that of RVG. Practical implications The results obtained here can help in the design of novel multifunctional heat exchangers/reactors by using flexible tabs and inserts instead of rigid ones. Originality/value The originality of this paper is the use of second mode oscillations of FVG to enhance heat transfer in laminar flow regime.


Sign in / Sign up

Export Citation Format

Share Document