Combustion Characteristics of Spray Flames of Soy Methyl Ester and Diesel Blends

Author(s):  
Cristian Aldana ◽  
Subramanyam Gollahalli ◽  
Ramkumar Parthasarathy
2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Pablo E. Barajas ◽  
R. N. Parthasarathy ◽  
S. R. Gollahalli

Biofuels, such as canola methyl ester (CME) and soy-methyl ester (SME) derived from vegetable oil, are alternative sources of energy that have been developed to reduce the dependence on petroleum-based fuels. In the present study, CME, SME, and commercial Jet-A fuel were tested in a porous-media burner at an equivalence ratio of 0.8 at the burner entrance. The measured combustion characteristics included NOx and CO emission indices, radiative fraction of heat release, and axial temperature profile in the surface stabilized and extended flame. The effects of fuel on the injector and porous-media durability were also documented. The NOx emission index was higher for the SME and CME flames than that of the Jet-A flame. Furthermore, the axial temperature profiles were similar for all the flames. The prolonged use of CME and SME resulted in more solid-particle deposition on the interior walls of the injector and within the structure of the porous medium than for Jet-A fuel, thereby increasing the restriction to the fuel/air flow and pressure drop across the burner.


2013 ◽  
Author(s):  
Cory Morton ◽  
Victor Tran ◽  
Ramkumar N. Parthasarathy ◽  
Subramanyam Gollahalli

2013 ◽  
Author(s):  
Cory D. Morton ◽  
Victor H. Tran ◽  
Ramkumar N. Parthasarathy ◽  
Subramanyam R. Gollahalli

The combustion characteristics of spray flames of canola methyl ester (CME) and blends with diesel fuel within a re-radiating environment were studied. The combustion chamber was lined with refractory bricks that were preheated to about 725 K (1305 °R). The flow rates of the fuels provided a constant heat release rate of about 7.33 kW (25,000 BTU/hr) at atmospheric pressure. Measurements of flame temperature, in-flame concentrations, global emissions, flame radiation and soot volume fraction were taken. The global CO emission index was significantly lower in the biofuel blend spray flames compared to that of the diesel spray flame. The global NO emission index was comparable for all spray flames, which agreed with peak flame temperature and in-flame NO concentration measurements. The radiative fraction of heat release was also comparable for all spray flames.


2014 ◽  
Author(s):  
Michael S. Richichi ◽  
Ramkumar N. Parthasarathy ◽  
Subramanyam R. Gollahalli

Palm Methyl Ester (PME) is an attractive alternate fuel to petroleum diesel because it can be produced from a renewable source, is close to being carbon-neutral in the environment, and has many properties similar to those of petroleum fuels. Although a few engine studies have been completed using PME, basic studies on the combustion of PME sprays are limited. Hence, the objective of this investigation was to study the combustion characteristics of spray flames of PME and diesel at three equivalence ratios: 0.4, 0.6 and 0.8. The liquid fuel was atomized and combusted with air in a heated environment; the coflow air temperature was maintained at 65% of the midpoint of the boiling point range of the fuels. The equivalence ratio was changed by altering the fuel flow rate, while maintaining the atomizing and coflow air flow rates constant, thus maintaining the gas velocity field invariant. The PME flames were shorter and less luminous than the diesel flames and had significant near-burner homogeneous-gas-phase reaction zones. The global CO emission index of the PME flames was higher than that of diesel flames at equivalence ratios of 0.4 and 0.6. The NO emission index of the PME flames was almost twice that of the diesel flames. The in-flame concentration profiles highlighted the effects of the significant fuel-bound oxygen content in PME.


Fuel ◽  
2020 ◽  
Vol 262 ◽  
pp. 116596
Author(s):  
Irene Ruiz-Rodriguez ◽  
Roger Cracknell ◽  
Michael Parkes ◽  
Thanos Megaritis ◽  
Lionel Ganippa

Sign in / Sign up

Export Citation Format

Share Document