Combustion Characteristics of Spray Flames of Canola Methyl Ester/Diesel Blends in a Furnace

2013 ◽  
Author(s):  
Cory D. Morton ◽  
Victor H. Tran ◽  
Ramkumar N. Parthasarathy ◽  
Subramanyam R. Gollahalli

The combustion characteristics of spray flames of canola methyl ester (CME) and blends with diesel fuel within a re-radiating environment were studied. The combustion chamber was lined with refractory bricks that were preheated to about 725 K (1305 °R). The flow rates of the fuels provided a constant heat release rate of about 7.33 kW (25,000 BTU/hr) at atmospheric pressure. Measurements of flame temperature, in-flame concentrations, global emissions, flame radiation and soot volume fraction were taken. The global CO emission index was significantly lower in the biofuel blend spray flames compared to that of the diesel spray flame. The global NO emission index was comparable for all spray flames, which agreed with peak flame temperature and in-flame NO concentration measurements. The radiative fraction of heat release was also comparable for all spray flames.

Author(s):  
Diego Romero ◽  
Ramkumar N. Parthasarathy ◽  
Subramanyam R. Gollahalli

Palm methyl ester (PME) is a renewable biofuel that is produced by the transesterification of palm oil; it is a popular alternative fuel used in the transportation sector. The objective of this investigation was to study the combustion characteristics of flames of pre-vaporized diesel and PME in a laminar flame environment at initial equivalence ratios of 2, 3 and 7 and to isolate the factors attributable to chemical structure of the fuel. The equivalence ratio was changed by altering the fuel flow rate, while maintaining the air flow rate constant. The global CO emission index of the PME flames was significantly lower than that of the diesel flames; however, the global NO emission index was comparable. The radiative fraction of heat release and the soot volume fraction were lower for the PME flames compared to the diesel flames. The peak temperatures were comparable at an equivalence ratio of 2, but at higher equivalence ratios, the peak temperatures in the PME flames were higher. The measurements highlight the differences in the combustion properties of biofuels and petroleum fuels and the coupling effects of equivalence ratio.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
D. Romero ◽  
R. N. Parthasarathy ◽  
S. R. Gollahalli

Palm methyl ester (PME) is a renewable biofuel that is produced by the transesterification of palm oil and is a popular alternative fuel used in the transportation sector, particularly in Asia. The objective of this investigation was to study the combustion characteristics of flames of prevaporized number 2 diesel and PME in a laminar flame environment at initial equivalence ratios of 2, 3, and 7 and to isolate the factors attributable to chemical structure of the fuel. The equivalence ratio was changed by altering the fuel flow rate, while maintaining the air flow rate constant. The global CO emission index of the PME flames was significantly lower than that of the diesel flames; however, the global NO emission index was comparable. The radiative fraction of heat release and the soot volume fraction were lower for the PME flames compared to those in the diesel flames. The peak temperatures were comparable in both flames at an equivalence ratio of 2, but at higher equivalence ratios, the peak temperatures in the PME flames were higher. The measurements highlight the differences in the combustion properties of biofuels and petroleum fuels and the coupling effects of equivalence ratio.


2014 ◽  
Author(s):  
Michael S. Richichi ◽  
Ramkumar N. Parthasarathy ◽  
Subramanyam R. Gollahalli

Palm Methyl Ester (PME) is an attractive alternate fuel to petroleum diesel because it can be produced from a renewable source, is close to being carbon-neutral in the environment, and has many properties similar to those of petroleum fuels. Although a few engine studies have been completed using PME, basic studies on the combustion of PME sprays are limited. Hence, the objective of this investigation was to study the combustion characteristics of spray flames of PME and diesel at three equivalence ratios: 0.4, 0.6 and 0.8. The liquid fuel was atomized and combusted with air in a heated environment; the coflow air temperature was maintained at 65% of the midpoint of the boiling point range of the fuels. The equivalence ratio was changed by altering the fuel flow rate, while maintaining the atomizing and coflow air flow rates constant, thus maintaining the gas velocity field invariant. The PME flames were shorter and less luminous than the diesel flames and had significant near-burner homogeneous-gas-phase reaction zones. The global CO emission index of the PME flames was higher than that of diesel flames at equivalence ratios of 0.4 and 0.6. The NO emission index of the PME flames was almost twice that of the diesel flames. The in-flame concentration profiles highlighted the effects of the significant fuel-bound oxygen content in PME.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
N. Dhamale ◽  
R. N. Parthasarathy ◽  
S. R. Gollahalli

Canola methyl ester (CME) is a biofuel that is a renewable alternative energy resource and is produced by the transesterification of canola oil. The objective of this study was to document the effects of turbulence on the combustion characteristics of blends of CME and No 2 diesel fuel in a partially-premixed flame environment. The experiments were conducted with mixtures of pre-vaporized fuel and air at an initial equivalence ratio of 7 and three burner exit Reynolds numbers, 2700, 3600, and 4500. Three blends with 25, 50, and 75% volume concentration of CME were studied. The soot volume fraction was highest for the pure diesel flames and did not change significantly with Reynolds number due to the mutually compensating effects of increased carbon input rate and increased air entrainment as the Reynolds number was increased. The global NOx emission index was highest and the CO emission index was the lowest for the pure CME flame, and varied non-monotonically with biofuel content in the blend The mean temperature and the NOx concentration at three-quarter flame height were generally correlated, indicating that the thermal mechanism of NOx formation was dominant in the turbulent biofuel flames also.


2017 ◽  
Vol 26 (8) ◽  
pp. 693 ◽  
Author(s):  
Pengfei Wang ◽  
Naian Liu ◽  
Yueling Bai ◽  
Linhe Zhang ◽  
Kohyu Satoh ◽  
...  

Fire whirl is frequently observed in wildland fires, and may cause serious difficulty in firefighting owing to its significant turbulent flow. In this paper, the radiation of fire whirl is investigated through experiments using a fire whirl facility made up of an air curtain apparatus, with five different sizes of n-heptane pools (25, 30, 35, 40 and 45 cm). The flame contour was extracted by image processing. By using infrared methods, the flame emissivity of fire whirl at different heights for different pool diameters was measured, and thereby a correlation was developed between the flame emissivity and the flame diameter. The soot volume fraction in the luminous flame is estimated to range within 2.5 × 10−6 to 4.0 × 10−6, much higher than that of general heptane pool fires, which provides an explanation of the higher flame emissivity of fire whirl. The emissive power profile v. normalised height is deduced from flame emissivity and flame temperature data. A multizone flame model (in which each zone is assumed as a grey body) is used, based on the measured data of flame emissivity, to predict the radiation of fire whirl. Comparison between the predicted and measured data of radiative flux shows good agreement.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
M. M. Ibrahim ◽  
A. Attia ◽  
H. A. Moneib ◽  
A. A. Emara

Abstract Soot study is a fundamental issue for the combustion process of hydrocarbon fuels. Losses in combustion efficiency, health risks, environmental loosestrife, and damage in furnaces may appear as a result of soot existence. This present paper aims at providing an experimental mapping of the changes in the soot volume fraction and axial flame mean temperature associated with the addition of different percentages of soot inhibitor additives (namely, Argon, Nitrogen, and Helium) in a vertical laminar diffusion natural gas flame issuing from a honeycomb circular burner. The soot volume fraction is acquired by the laser extinction technique, while the axial variations of the mean flame temperature are accomplished by a bare 51 µm (Pt-30%Rh versus Pt-6%Rh) thermocouple to render radiation loss insignificant. The concentration of the individual additives is varied from 5% to 25% (step 5%) and the experiments are conducted at a fixed natural gas throughput (350 mL/min) to ensure unvaried thermal input. Measurement traverses along and across (at fixed radial locations) are conducted. The fuel flowrate is measured by a precision digital gas flowmeter (type: Varian intelligent), while the flow of the individual additive is admitted via solenoid valves (handled with labview program) and is injected through mixing pipes located at burner entry. The different regimes of the soot inception (molecular; zone 1), soot growth zone (zone 2), and soot oxidation (zone 3) are accurately defined and assessed in relation to the temperature results for the different cases under investigation.


Author(s):  
Cristian Aldana ◽  
Ramkumar N. Parthasarathy ◽  
Subramanyam R. Gollahalli

Canola methyl ester (CME) is a biofuel that is produced by the transesterification of canola oil; it is renewable, carbon-neutral and low in sulfur content. The objective of this study was to document the combustion characteristics of spray flames of CME and No 2 diesel (petroleum fuel) blends. Three blends with 25%, 50% and 75% volume concentration of CME were studied. The fuel was atomized and mixed with air in a heated environment at a supply equivalence ratio of 0.62. Measurements of global CO and NO emissions, inflame temperature and in-flame concentrations of combustion products were made. The near-injector homogeneous gas-phase reaction zone increased in size with the addition of CME. The global CO and NO emissions decreased with the increase in CME content in the fuel blend. The in-flame NO concentration profiles and flame temperature profiles followed similar trends, suggesting that the thermal mechanism of NO formation was dominant in these flames.


1990 ◽  
Vol 112 (1) ◽  
pp. 52-59 ◽  
Author(s):  
O¨. L. Gu¨lder ◽  
B. Glavincˇevski ◽  
M. F. Baksh

A systematic study of soot formation along the centerlines of axisymmetric laminar diffusion flames of a large number of liquid hydrocarbons, hydrocarbon blends, and aviation turbine and diesel fuels was made. Measurements of the attenuation of a laser beam across the flame diameter were used to obtain the soot volume fraction, assuming Rayleigh extinction. Two sets of hydrocarbon blends were designed such that the molecular fuel composition varied considerably but the temperature fields in the flames were kept practically constant. Thus it was possible to separate the effects of molecular structure and the flame temperature on soot formation. It was quantitatively shown that the smoke point height is a lumped measure of fuel molecular constitution. The developed empirical relationship between soot volume fractions and fuel smoke point and hydrogen-to-carbon ratio was applied to five different combustor radiation data, and good agreement was obtained.


Sign in / Sign up

Export Citation Format

Share Document