Wind Shear Effect on Final Glide

Author(s):  
U. Solies ◽  
A. Bogershausen
Keyword(s):  
2014 ◽  
Vol 641-642 ◽  
pp. 1040-1045
Author(s):  
Zhong Fan Zhu

An analytical model based on some solutions in the context of a two-layered fluid was developed to estimate the occurrence of northeasterly wind-driven coastal upwelling associated with “Aoshio” on the northeast shore of Tokyo Bay, and its validity was verified by comparing with observation data [1]. In this study, influences of all of the factors incorporated into this analytical model (including densities and thicknesses of the upper and lower layers, the parameter expressing the influences of interfacial friction and bottom friction) on the model are analyzed. The analytical model is found to express the competition between the wind-shear effect and the stratification effect: when the former dominates over the latter, Aoshio will occur on the northeast shore of the bay. The parameter that can be used to characterize the stratification effect can be simply expressed in terms of the product of density contrast and the square of thickness of the upper layer. Using different values of this parameter corresponding to different months in the model can simply estimate in which months it is easy for Aoshio phenomenon to happen on the northeast shore of the bay, and the result is roughly consistent with an observation phenomenon that Aoshio was frequently observed on the northeast shore of the bay in September and May and relatively less observed in June and July during 1978-2010.


2019 ◽  
Vol 135 ◽  
pp. 1186-1199 ◽  
Author(s):  
Binrong Wen ◽  
Xinliang Tian ◽  
Qi Zhang ◽  
Xingjian Dong ◽  
Zhike Peng ◽  
...  

2010 ◽  
Vol 23 (24) ◽  
pp. 6624-6640 ◽  
Author(s):  
Chia Chou ◽  
Yu-Chien Hsueh

Abstract Mechanisms of northward-propagating intraseasonal oscillations (ISOs) over the Indian Ocean (IO) and the western North Pacific (WNP) are examined for the possibility of their existence in observations. They include the following: 1) the vorticity advection effect, which is associated with the advection of anomalous baroclinic vorticity by mean baroclinic meridional winds; 2) the vertical wind shear effect, which is the vertical advection associated with the meridional gradient of baroclinic divergence and mean easterly vertical wind shear; 3) the moisture advection effect induced by mean flow; and 4) the air–sea interaction via surface latent heat flux. Because of differences in mean state, the influence of each mechanism on the northward-propagating ISOs is different between the IO and the WNP. The vorticity advection effect is consistently found over both the IO and the WNP, while the air–sea interaction has different impacts on the northward-propagating ISOs over the IO and the WNP. The vertical wind shear effect and the moisture advection effect are relatively important over the IO but not over the WNP. Processes to determine changes in SST are also different between the IO and the WNP. Over the IO, SST is mainly associated with surface solar radiation. Wind-stirring effects, surface latent heat flux, and subsurface water entrainment are secondary. Over the WNP, wind-stirring effects become important, but surface solar radiation is secondary.


1984 ◽  
Author(s):  
P. KUHN ◽  
R. KURKOWSKI
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document