Active Control of Tip Leakage Flow for Low-Pressure Turbine by Ring-Type Plasma Actuators

Author(s):  
Takayuki Matsunuma ◽  
Takehiko Segawa
2015 ◽  
Vol 2015 (0) ◽  
pp. _S0530402--_S0530402-
Author(s):  
Toshiyuki OHASHI ◽  
Hitoshi ISHIKAWA ◽  
Takehiko SEGAWA ◽  
Takayuki MATSUNUMA

Author(s):  
W. Sanz ◽  
M. Kelterer ◽  
R. Pecnik ◽  
A. Marn ◽  
E. Go¨ttlich

The demand of a further increased bypass ratio of aero engines will lead to low pressure turbines with larger diameters which rotate at lower speed. Therefore, it is necessary to guide the flow leaving the high pressure turbine to the low pressure turbine at a larger diameter without any loss generating separation or flow disturbances. Due to costs and weight this intermediate turbine duct has to be as short as possible. This leads to an aggressive (high diffusion) S-shaped duct geometry. In order to investigate the influence of the blade tip gap height of a preceding rotor on such a high-diffusion duct flow a detailed measurement campaign in the Transonic Test Turbine Facility at Graz University of Technology has been performed. A high diffusion intermediate duct is arranged downstream a high-pressure turbine stage providing an exit Mach number of about 0.6 and a swirl angle of −15 degrees (counter swirl). A low-pressure vane row is located at the end of the duct and represents the counter rotating low pressure turbine at larger diameter. At the ASME 2007, results of these investigations were presented for two different tip gap heights of 1.5% span (0.8 mm) and 2.4% span (1.3 mm). In order to better understand the flow phenomena observed in the intermediate duct a detailed numerical study is conducted. The unsteady flow through the whole configuration is simulated for both gap heights as well as for a rotor with zero gap height. The unsteady data are compared at the stage exit and inside the duct to study the flow physics. The calculation of the zero gap height configuration allows to determine the influence of the tip leakage flow of the preceding rotor on the intermediate turbine duct. It turns out that for this aggressive duct the tip leakage flow has a very positive effect on the pressure recovery.


Author(s):  
Takayuki Matsunuma ◽  
Takehiko Segawa

Tip leakage flow through the small gap between the blade tip and the casing wall in turbomachinery reduces the aerodynamic performance of the blade. New ring-type dielectric barrier discharge (DBD) plasma actuators have been developed to facilitate active control of the tip leakage flow of a turbine rotor. In the present study, the ring-type plasma actuators consisted of metallic wires coated with insulation material, mounted in an insulator embedded in the tip casing wall. For the fundamental experiments using a flat plate and a single airfoil with tip clearance, particle image velocimetry (PIV) was used to obtain two-dimensional velocity field measurements near the plate and blade tip regions. From flat plate experiments in a static flow field, it was confirmed that the operation of the plasma actuator generates an upward flow at the corner between the blade tip and the casing wall, and this forms a perpendicular obstacle to the tip leakage flow. In flat plate experiments on tip leakage flow in a wind tunnel, the forcibly-induced tip leakage flow was successfully dissipated by means of the plasma actuator flow control. In single airfoil experiments, the tip leakage flow was also reduced by the plasma actuator. In annular turbine rotor experiments, the plasma emission at the blade tip and its motion with blade rotation were determined. Single-element hot-wire anemometry was used to measure the turbulence intensity distributions at the turbine rotor exit. The amplitude of input voltage for the plasma actuator was varied from ±3.0 to ±6.0 kV. The high turbulence intensity region created by the tip leakage flow was reduced with an increase in the input voltage of the plasma actuator.


Author(s):  
Pouya Ghaffari ◽  
Reinhard Willinger ◽  
Sabine Bauinger ◽  
Andreas Marn

In addition to geometrical modifications of the blade tip for reducing tip-leakage mass flow rate the method of passive tip-injection serves as an aerodynamic resistance towards the tip-leakage flow. The impact of this method has been investigated thoroughly at unshrouded blades in linear cascades. Furthermore combinations of shrouded blades with passive tip-injection have been investigated analytically as well as via numerical simulations for incompressible flow in linear cascades. The objective of this paper is to consider a real uncooled low pressure turbine stage with shrouded blades and to investigate the effect of passive tip-injection on various operational characteristics. CFD calculations have been carried out in a rotational frame taking into consideration compressible flow and serve for evaluating the method of passive tip-injection in the given turbine stage. Experimental data obtained from the machine without tip-injection serve as boundary conditions for the CFD calculations.


Author(s):  
Takayuki Matsunuma ◽  
Takehiko Segawa

Tip leakage flow through the small gap between the blade tip of a turbine and the casing endwall reduces the aerodynamic performance. String-type dielectric barrier discharge (DBD) plasma actuators made of silicone printed-circuit board were used for the active control of the tip leakage flow of a linear turbine cascade. Sinusoidal voltage excitation with amplitude varying from 4 kV to 6 kV (peak-to-peak voltage: 8 kVp-p to 12 kVp-p) and fixed frequency of 10 kHz was applied to the plasma actuators. The two-dimensional velocity field in the blade passage was estimated by particle image velocimetry (PIV) under the very low Reynolds number conditions of Re = 7.1 × 103 and 1.42 × 104. The tip leakage flow was reduced by the flow control using plasma actuators. The high turbulence intensity region caused by the tip leakage flow was also reduced. For the quantitative comparisons, the displacement thickness of the absolute velocity distributions was examined. By the flow control of the plasma actuators, the displacement thickness at tip-side gradually decreased as the input voltage increased. Although three types of plasma actuators were used, with thin, thick, and flat electrodes and different ratios of discharge area, the differences in their effect were negligible. The reason for these very small differences in effect is the wide spread of the plasma discharge from the encapsulated electrode in the plasma actuator to the exposed electrode of the blade tip. At the relatively high Reynolds number condition of Re = 1.42 × 104, the effect of the plasma actuator was smaller than that at the lower Reynolds number condition of Re = 7.1 × 103.


2009 ◽  
Vol 22 (2) ◽  
pp. 129-137 ◽  
Author(s):  
Wei Li ◽  
Weiyang Qiao ◽  
Kaifu Xu ◽  
Hualing Luo

Author(s):  
Jianyang Yu ◽  
Wenchun Bao ◽  
Fu Chen ◽  
Yanping Song ◽  
Cong Wang

Abstract The dielectric barrier discharge (DBD) plasma actuator, in which electrodes are asymmetric arranged, has already demonstrated its ability in flow control. In the present work, the configuration of multiple plasma actuators is placed at the suction side of the cascade top to realize the tip leakage control. However, massive configurations appear when the number of plasma actuators increases, resulting in the investigation of actuator configuration for tip leakage flow control becomes a challenge. The surrogate modelling approach provides a cheap and efficient method to investigate the effect of multiple plasma actuators on the tip leakage flow control. By constructing an approximation model, tip leakage mass flow rates of all configuration are obtained in the present work. What’s more, the flow structures in the tip clearance controlled by the plasma actuators are explained in the process of topological analysis. The results show that the tip leakage mass flow rate is decreasing with the number of active plasma actuators increasing. However, the decreasing would reach its limits in the process of adding plasma actuators. In the analysis of flow topology, single actuator would generate a small vortex at the suction side to cause an obstacle in the tip leakage flow. While the continuous arrangements of plasma actuator is beneficial to generate an induced vortex to diminish the tip leakage flow.


Sign in / Sign up

Export Citation Format

Share Document