Impact of Passive Tip-Injection on Tip-Leakage Flow in Axial Low Pressure Turbine Stage

Author(s):  
Pouya Ghaffari ◽  
Reinhard Willinger ◽  
Sabine Bauinger ◽  
Andreas Marn

In addition to geometrical modifications of the blade tip for reducing tip-leakage mass flow rate the method of passive tip-injection serves as an aerodynamic resistance towards the tip-leakage flow. The impact of this method has been investigated thoroughly at unshrouded blades in linear cascades. Furthermore combinations of shrouded blades with passive tip-injection have been investigated analytically as well as via numerical simulations for incompressible flow in linear cascades. The objective of this paper is to consider a real uncooled low pressure turbine stage with shrouded blades and to investigate the effect of passive tip-injection on various operational characteristics. CFD calculations have been carried out in a rotational frame taking into consideration compressible flow and serve for evaluating the method of passive tip-injection in the given turbine stage. Experimental data obtained from the machine without tip-injection serve as boundary conditions for the CFD calculations.

Author(s):  
W. Sanz ◽  
M. Kelterer ◽  
R. Pecnik ◽  
A. Marn ◽  
E. Go¨ttlich

The demand of a further increased bypass ratio of aero engines will lead to low pressure turbines with larger diameters which rotate at lower speed. Therefore, it is necessary to guide the flow leaving the high pressure turbine to the low pressure turbine at a larger diameter without any loss generating separation or flow disturbances. Due to costs and weight this intermediate turbine duct has to be as short as possible. This leads to an aggressive (high diffusion) S-shaped duct geometry. In order to investigate the influence of the blade tip gap height of a preceding rotor on such a high-diffusion duct flow a detailed measurement campaign in the Transonic Test Turbine Facility at Graz University of Technology has been performed. A high diffusion intermediate duct is arranged downstream a high-pressure turbine stage providing an exit Mach number of about 0.6 and a swirl angle of −15 degrees (counter swirl). A low-pressure vane row is located at the end of the duct and represents the counter rotating low pressure turbine at larger diameter. At the ASME 2007, results of these investigations were presented for two different tip gap heights of 1.5% span (0.8 mm) and 2.4% span (1.3 mm). In order to better understand the flow phenomena observed in the intermediate duct a detailed numerical study is conducted. The unsteady flow through the whole configuration is simulated for both gap heights as well as for a rotor with zero gap height. The unsteady data are compared at the stage exit and inside the duct to study the flow physics. The calculation of the zero gap height configuration allows to determine the influence of the tip leakage flow of the preceding rotor on the intermediate turbine duct. It turns out that for this aggressive duct the tip leakage flow has a very positive effect on the pressure recovery.


Author(s):  
Hao Sun ◽  
Jun Li ◽  
Zhenping Feng

The clearance between the rotor blade tip and casing wall in turbomachinery passages induces leakage flow loss and thus degrades aerodynamic performance of the machine. The flow field in turbomachinery is significantly influenced by the rotor blade tip clearance size. To investigate the effects of tip clearance size on the rotor-stator interaction, the turbine stage profile from Matsunuma’s experimental tests was adopted, and the unsteady flow fields with two tip clearance sizes of 0.67% and 2.00% of blade span was numerical simulated based on Harmonic method using NUMECA software. By comparing with the domain scaling method, the accuracy of the harmonic method was verified. The interaction mechanism between the stator wake and the leakage flow was investigated. It is found that the recirculation induced by the stator wake is separated by a significant “interaction line” from the flow field close to the suction side in the clearance region. The trend of the pressure fluctuation is contrary on both sides of the line. When the stator wakes pass by the suction side, the pressure field fluctuates and the intensity of the tip leakage flow varies. With the clearance size increasing, the “interaction line” is more far away from the suction side and the intensity of tip leakage flow also fluctuates more strongly.


Author(s):  
Markus Hamik ◽  
Reinhard Willinger

Depending on the blade aspect ratio, tip-leakage losses can contribute up to one third of the total losses in an axial turbine blade row. In unshrouded turbine blade rows, the radial gaps allow working fluid to pass from the pressure to the suction sides. This tip-leakage flow does not contribute to the work output of the turbine stage. Therefore, any technique which tends to reduce tip-leakage losses has the objective to decrease the flow through the tip gaps. A frequently used method of reducing the tip-leakage flow is the modification of the blade tip geometry by so-called squealers or winglets. Since this method decreases the sensitivity of tip-leakage losses on tip gap width, it is called tip desensitization. This paper presents a new method for tip desensitization: the passive blade tip injection. A low speed cascade wind tunnel is used for experimental investigations. Geometry of the turbine cascade is the up-scale of the tip section of a gas turbine rotor row. Three different gap widths in the range from 0.85% to 2.50% chord length are used. Total pressure, static pressure and flow angles are obtained by traversing a pneumatic five-hole probe about 0.3 axial chord lengths downstream of the turbine cascade. For investigations of the tip injection effect, a single blade of the cascade is modified by an injection channel. Based on experimental results, it is shown that the passive tip injection method decreases tip-leakage losses. At small tip gaps, this reduction can be rather significant. Finally, the positive influence of blade tip injection on tip-leakage losses is described by an analytical model based on the discharge coefficient.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Huang Chen ◽  
Yuanchao Li ◽  
Joseph Katz

Experiments in a refractive index-matched axial turbomachine facility show that semicircular skewed axial casing grooves (ACGs) reduce the stall flowrate by 40% but cause a 2.4% decrease in the maximum efficiency. Aiming to elucidate mechanism that might cause the reduced efficiency, stereo-PIV measurements examine the impact of the ACGs on the flow structure and turbulence in the tip region near the best efficiency point (BEP), and compare them to those occurring without grooves and at low flowrates. Results show that the periodic inflow into the groove peaks when the rotor blade pressure side (PS) overlaps with the downstream end of the groove, but diminishes when this end faces the suction side (SS). Entrainment of the PS boundary layer and its vorticity generates a vortical loop at the entrance to the groove, and a “discontinuity” in the tip leakage vortex (TLV) trajectory. During exposure to the SS, the backward tip leakage flow separates at the entrance to the groove, generating a counter-rotating circumferential “corner vortex,” which the TLV entrains into the passage at high flowrates. Interactions among these structures enlarge the TLV and create a broad area with secondary flows and elevated turbulence near the groove's downstream corner. A growing shear layer with weaker turbulence also originates from the upstream corner. The groove also increases the flow angle upstream of the blade tip and varies it periodically. Accordingly, the circulation shed from the blade tip and strength of leakage flow increase near the blade leading edge (LE).


Author(s):  
Md Hamidur Rahman ◽  
Sung In Kim ◽  
Ibrahim Hassan ◽  
Carole El Ayoubi

An unsteady numerical investigation was performed to examine time dependent behaviors of the tip leakage flow structures and heat transfer on the rotor blade tip and casing in a single stage gas turbine engine. A transonic, high-pressure turbine stage was modeled and simulated using a stage pressure ratio of 3.2. The rotor’s tip clearance was 1.2 mm in height (3% of the rotor span) and its speed was set at 9500 rpm. Periodic flow is observed for each vane passing period. Tip leakage flow as well as heat transfer data showed highly time dependent behaviors. A stator trailing edge shock appears as the turbine stage is operating at transonic conditions. The shock alters the flow condition in the rotor section, namely, the tip leakage flow structures and heat transfer rate distributions. The instantaneous Nusselt number distributions are compared to the time averaged and steady-state results. The same patterns in tip leakage flow structures and heat transfer rate distributions were observed in both unsteady and steady simulations. However, the unsteady simulation captured the locally time-dependent high heat transfer phenomena caused by the unsteady interaction with the upstream vane trailing-edge shock and the passing wake.


Author(s):  
Pouya Ghaffari ◽  
Reinhard Willinger

In terms of efficiency improvement many methods for reducing the blade tip-leakage mass flow rate have been proposed. Some of these methods are based on increasing the flow resistance with aid of geometrical modifications of the blade tip (squealers, winglets, shrouded blades, etc.) whereas other methods take advantage of aerodynamical resistance with passive tip-injection as an example. The objective of this paper is a combination of both methods in order to achieve higher reduction in tip-leakage mass flow rate. In the first part of this work necessary characteristic parameters of modern low pressure turbine blades in aircraft gas turbines are estimated. These parameters are taken into consideration to calculate the range of physical quantities influencing tip-leakage flow. Subsequently a two dimensional flow model is obtained with the so called discharge coefficient as the ratio of the actual tip gap mass flow rate to its highest possible value. The investigations are based on dimensionless calculations. In the end the results obtained from dimensionless 2D CFD-simulations are presented and compared with the analytical results. This leads to conclusions regarding the impact of various parameters on the effectiveness of the passive tip-injection.


Author(s):  
Dianliang Yang ◽  
Xiaobing Yu ◽  
Zhenping Feng

In this paper, numerical methods have been applied to the investigation of the effect of rotation on the blade tip leakage flow and heat transfer. Using the first stage rotor blade of GE-E3 engine high pressure turbine, both flat tip and squealer tip have been studied. The tip gap height is 1% of the blade height, and the groove depth of the squealer tip is 2% of the blade height. Heat transfer coefficient on tip surface obtained by using different turbulence models was compared with experimental results. And the grid independence study was carried out by using the Richardson extrapolation method. The effect of the blade rotation was studied in the following cases: 1) blade domain is rotating and shroud is stationary; 2) blade domain is stationary and shroud is rotating; and 3) both blade domain and shroud are stationary. In this approach, the effects of the relative motion of the endwall, the centrifugal force and the Coriolis force can be investigated respectively. By comparing the results of the three cases discussed, the effects of the blade rotation on tip leakage flow and heat transfer are revealed. It indicated that the main effect of the rotation on the tip leakage flow and heat transfer is resulted from the relative motion of the shroud, especially for the squealer tip blade.


Author(s):  
Cengiz Camci ◽  
Debashis Dey ◽  
Levent Kavurmacioglu

This paper deals with an experimental investigation of aerodynamic characteristics of full and partial-length squealer rims in a turbine stage. Full and partial-length squealer rims are investigated separately on the pressure side and on the suction side in the “Axial Flow Turbine Research Facility” (AFTRF) of the Pennsylvania State University. The streamwise length of these “partial squealer tips” and their chordwise position are varied to find an optimal aerodynamic tip configuration. The optimal configuration in this cold turbine study is defined as the one that is minimizing the stage exit total pressure defect in the tip vortex dominated zone. A new “channel arrangement” diverting some of the leakage flow into the trailing edge zone is also studied. Current results indicate that the use of “partial squealer rims” in axial flow turbines can positively affect the local aerodynamic field by weakening the tip leakage vortex. Results also show that the suction side partial squealers are aerodynamically superior to the pressure side squealers and the channel arrangement. The suction side partial squealers are capable of reducing the stage exit total pressure defect associated with the tip leakage flow to a significant degree.


Sign in / Sign up

Export Citation Format

Share Document