Time-resolved Measurements of Electric Field, Electron Temperature, and Electron Density in a Nanosecond-Pulsed Dielectric Barrier Discharge

2020 ◽  
Author(s):  
Timothy Chen ◽  
Benjamin Goldberg ◽  
Aric C. Rousso ◽  
Yiguang Ju ◽  
Egemen Kolemen
2019 ◽  
Vol 7 ◽  
pp. 1-9 ◽  
Author(s):  
Bhesh Bahadur Thapa ◽  
Raju Bhai Tyata

This paper reports the electrical behaviors of atmospheric pressure plasma reactor with Dielectric Barrier Discharge (DBD) in air medium. The DBD discharge was generated in air at atmospheric pressure using Disc Electrode Geometry (DEG) reactor powered by ac voltage (0-7kV) at a frequency of 24kHz. The glass plates of thickness 1.0mm and 3.0mm were used as dielectric. The current-voltage characteristics were studied for two air gap of 2.0mm and 3.0mm by varying the applied voltages. The numbers of filamentary micro discharges were found as increased in each half cycle with increase in power. The observations of Lissajous figure of applied voltage versus electric current was used for measuring energy deposited by discharge and also compared with calculated value. Lissajous figures clearly show that the energy deposited by discharge was dependent on applied voltage. The electron density of discharge was measured by power balance method. Electron density was found in the order of 1017 per cubic meter.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1381 ◽  
Author(s):  
Zhang ◽  
Yang ◽  
Wang ◽  
Jia ◽  
Yuan ◽  
...  

Discharge regime transition in a single pulse can present the breakdown mechanism of nanosecond pulsed dielectric barrier discharge. In this paper, regime transitions between streamer, diffuse, and surface discharges in nanosecond pulsed dielectric barrier discharge are studied experimentally using high resolution temporal–spatial spectra and instantaneous exposure images. After the triggering time of 2–10 ns, discharge was initiated with a stable initial streamer channel propagation. Then, transition of streamer-diffuse modes could be presented at the time of 10–34 ns, and a surface discharge can be formed sequentially on the dielectric plate. In order to analyze the possible reason for the varying discharge regimes in a single discharge pulse, the temporal–spatial distribution of vibrational population of molecular nitrogen N2 (C3Πu, v = 0,1,2) and reduced electric field were calculated by the temporal–spatial emission spectra. It is found that at the initial time, a distorted high reduced electric field was formed near the needle electrode, which excited the initial streamer. With the initial streamer propagating to the dielectric plate, the electric field was rebuilt, which drives the transition from streamer to diffuse, and also the propagation of surface discharge.


Sign in / Sign up

Export Citation Format

Share Document