Position Control of an Omni-Directional Aerial Vehicle for Simulating Free-Flyer In-Space Assembly Operations

2021 ◽  
Author(s):  
Theresa Blandino ◽  
Alexander Leonessa ◽  
Daniel Doyle ◽  
Jonathan Black
2022 ◽  
Author(s):  
Theresa Blandino ◽  
Kevin Schroeder ◽  
Daniel Doyle ◽  
Jonathan Black

2019 ◽  
Vol 36 (7) ◽  
pp. 1212-1221
Author(s):  
Takahiro Ikeda ◽  
Satoshi Minamiyama ◽  
Shogo Yasui ◽  
Kenichi Ohara ◽  
Akihiko Ichikawa ◽  
...  

Author(s):  
Bing Zhu ◽  
Mou Chen ◽  
Tao Li

Abstract In this paper, a trajectory tracking control scheme for a quadrotor unmanned aerial vehicle (UAV) under unknown external disturbance and input saturation is developed. This scheme includes the position control system and attitude control one, in which the attitude control system is further divided into the fast loop for angular velocity and the slow one for attitude angle based on time-scale separation principle. Then, an input constrained dynamic surface control scheme combined with a disturbance observer is designed to achieve the total thrust, desired roll, and pitch angle in the position control system. For the coupled attitude system, a dynamic surface control scheme together with generalized model predictive controller (GMPC) is proposed to tackle both the fast loop system and the slow one. Since the unknown external disturbance and input saturation are considered, a sliding mode disturbance observer (SMDO) is further designed to achieve the strong robustness. Finally, some simulation results are presented to show robustness and effectiveness of our proposed tracking scheme.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 931 ◽  
Author(s):  
Cai Luo ◽  
Zhenpeng Du ◽  
Leijian Yu

Unmanned aerial vehicles (UAVs) demonstrate excellent manoeuvrability in cluttered environments, which makes them a suitable platform as a data collection and parcel delivering system. In this work, the attitude and position control challenges for a drone with a package connected by a wire is analysed. During the delivering task, it is very difficult to eliminate the external unpredictable disturbances. A robust neural network-based backstepping sliding mode control method is designed, which is capable of monitoring the drone’s flight path and desired attitude with a suspended cable attached. The convergence of the position and attitude errors together with the Lyapunov function are employed to attest to the robustness of the nonlinear transportation platform. The proposed control system is tested with a simulation and in an outdoor environment. The simulation and open field test results for the UAV transportation platform verify the controllers’ reliability.


2018 ◽  
Vol 30 (3) ◽  
pp. 354-362 ◽  
Author(s):  
Naoya Hatakeyama ◽  
◽  
Tohru Sasaki ◽  
Kenji Terabayashi ◽  
Masahiro Funato ◽  
...  

Recently, many studies on unmanned aerial vehicle (UAVs) that perform position control using camera images have been conducted. The measurements of the surrounding environment and position of the mobile robot are important in controlling the UAV. The distance and direction of the optical ray to the object can be obtained from the diameter and coordinates in the image. In these studies, various camera systems using plane cameras, fisheye cameras, or omnidirectional cameras are used. Because these camera systems have different geometrical optics, one simple image position measurement method cannot yield the position and posture. Therefore, we propose a new method that measures the position from the size of three-dimensional landmarks using omnidirectional cameras. Three-dimensional measurements are performed by these omnidirectional cameras using the distance and direction to the object. This method can measure three-dimensional positions from the direction and distance of the ray; therefore, if the optical path such as the reflection or refraction is known, it can perform measurements using a different optical system’s camera. In this study, we construct a method to obtain the relative position and relative posture necessary for the self-position estimation based on an object with an omnidirectional camera; further, we verify this method by experiment.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jafar Tavoosi

PurposeIn this paper, an innovative hybrid intelligent position control method for vertical take-off and landing (VTOL) tiltrotor unmanned aerial vehicle (UAV) is proposed. So the more accurate the reference position signals tracking, the proposed control system will be better.Design/methodology/approachIn the proposed method, for the vertical flight mode, first the model reference adaptive controller (MRAC) operates and for the horizontal flight, the model predictive control (MPC) will operate. Since the linear model is used for both of these controllers and naturally has an error compared to the real nonlinear model, a neural network is used to compensate for them. So the main novelties of this paper are a new hybrid control design (MRAC & MPC) and a neural network-based compensator for tiltrotor UAV.FindingsThe proper performance of the proposed control method in the simulation results is clear. Also the results showed that the role of compensator is very important and necessary, especially in extreme speed wind conditions and uncertain parameters.Originality/valueNovel hybrid control method. 10;-New method to use neural network as compensator in an UAV.


2015 ◽  
Vol 719-720 ◽  
pp. 346-351 ◽  
Author(s):  
Wei Nan Gao ◽  
Jia Lu Fan ◽  
Yan Nong Li

Quadrotor is a kind of popular unmanned aerial vehicle which obtains prime advantages in simple structure, vertically taking off and landing and hovering ability; hence it possesses wide application prospects in reconnaissance and rescue, geological exploration and video surveillance. However, attitude and position control of the quadrotor are challenging tasks because it is an under-actuated system with strong nonlinear, coupling and model uncertainty characteristics. In this paper, the dynamics model and the state space function of the micro-quadrotor are firstly established. Then, a cascade control scheme is proposed to decouple the control system and a multivariate RBF(Radial Basis Function) neural network control PID algorithm is proposed to realize robust control of the quadrotor. This algorithm is not only characterized by simple structure and easy implementation, but also capable of self-adaption and online learning. Simulation results show that the proposed control algorithm performs well in tracking and under disturbances and model uncertainties.


Author(s):  
Alessandro Baldini ◽  
Riccardo Felicetti ◽  
Alessandro Freddi ◽  
Sauro Longhi ◽  
Andrea Monteriu ◽  
...  

Author(s):  
M. Rehak ◽  
J. Skaloud

In this study we present a Micro Aerial Vehicle (MAV) equipped with precise position and attitude sensors that together with a pre-calibrated camera enables accurate corridor mapping. The design of the platform is based on widely available model components to which we integrate an open-source autopilot, customized mass-market camera and navigation sensors. We adapt the concepts of system calibration from larger mapping platforms to MAV and evaluate them practically for their achievable accuracy. We present case studies for accurate mapping without ground control points: first for a block configuration, later for a narrow corridor. We evaluate the mapping accuracy with respect to checkpoints and digital terrain model. We show that while it is possible to achieve pixel (3-5 cm) mapping accuracy in both cases, precise aerial position control is sufficient for block configuration, the precise position and attitude control is required for corridor mapping.


Sign in / Sign up

Export Citation Format

Share Document