Oxygen Production from Lunar Pyroclastic Deposits

2021 ◽  
Author(s):  
Carlton Allen
Author(s):  
Donald Eugene Canfield

This chapter discusses the modeling of the history of atmospheric oxygen. The most recently deposited sediments will also be the most prone to weathering through processes like sea-level change or uplift of the land. Thus, through rapid recycling, high rates of oxygen production through the burial of organic-rich sediments will quickly lead to high rates of oxygen consumption through the exposure of these organic-rich sediments to weathering. From a modeling perspective, rapid recycling helps to dampen oxygen changes. This is important because the fluxes of oxygen through the atmosphere during organic carbon and pyrite burial, and by weathering, are huge compared to the relatively small amounts of oxygen in the atmosphere. Thus, all of the oxygen in the present atmosphere is cycled through geologic processes of oxygen liberation (organic carbon and pyrite burial) and consumption (weathering) on a time scale of about 2 to 3 million years.


1992 ◽  
Author(s):  
CHRISTIAN KNUDSEN ◽  
MICHAEL GIBSON ◽  
DAVID BRUENEMAN ◽  
SEISHI SUZUKI ◽  
TETSUJI YOSHIDA ◽  
...  

1988 ◽  
Vol 20 (4-5) ◽  
pp. 101-108 ◽  
Author(s):  
R. C. Clifft ◽  
M. T. Garrett

Now that oxygen production facilities can be controlled to match the requirements of the dissolution system, improved oxygen dissolution control can result in significant cost savings for oxygen activated sludge plants. This paper examines the potential cost savings of the vacuum exhaust control (VEC) strategy for the City of Houston, Texas 69th Street Treatment Complex. The VEC strategy involves operating a closed-tank reactor slightly below atmospheric pressure and using an exhaust apparatus to remove gas from the last stage of the reactor. Computer simulations for one carbonaceous reactor at the 69th Street Complex are presented for the VEC and conventional control strategies. At 80% of design loading the VEC strategy was found to provide an oxygen utilization efficiency of 94.9% as compared to 77.0% for the conventional control method. At design capacity the oxygen utilization efficiency for VEC and conventional control was found to be 92.3% and 79.5%, respectively. Based on the expected turn-down capability of Houston's oxygen production faciilities, the simulations indicate that the VEC strategy will more than double the possible cost savings of the conventional control method.


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
L. R. Monnereau ◽  
B. S. Ellis ◽  
D. Szymanowski ◽  
O. Bachmann ◽  
M. Guillong

AbstractDense, glassy pyroclasts found in products of explosive eruptions are commonly employed to investigate volcanic conduit processes through measurement of their volatile inventories. This approach rests upon the tacit assumption that the obsidian clasts are juvenile, that is, genetically related to the erupting magma. Pyroclastic deposits within the Yellowstone-Snake River Plain province almost without exception contain dense, glassy clasts, previously interpreted as hyaloclastite, while other lithologies, including crystallised rhyolite, are extremely rare. We investigate the origin of these dense, glassy clasts from a coupled geochemical and textural perspective combining literature data and case studies from Cougar Point Tuff XIII, Wolverine Creek Tuff, and Mesa Falls Tuff spanning 10 My of silicic volcanism. These results indicate that the trace elemental compositions of the dense glasses mostly overlap with the vesiculated component of each deposit, while being distinct from nearby units, thus indicating that dense glasses are juvenile. Textural complexity of the dense clasts varies across our examples. Cougar Point Tuff XIII contains a remarkable diversity of clast appearances with the same glass composition including obsidian-within-obsidian clasts. Mesa Falls Tuff contains clasts with the same glass compositions but with stark variations in phenocryst content (0 to 45%). Cumulatively, our results support a model where most dense, glassy clasts reflect conduit material that passed through multiple cycles of fracturing and sintering with concurrent mixing of glass and various crystal components. This is in contrast to previous interpretations of these clasts as entrained hyaloclastite and relaxes the requirement for water-magma interaction within the eruptive centres of the Yellowstone-Snake River Plain province.


2021 ◽  
Author(s):  
Michał Mierczak ◽  
Jerzy Karczewski

AbstractThe article describes the establishment of the location of agate geodes using the GPR method in the area of the Simota gully (Lesser Poland Voivodeship). Agates (a multicolored variety of gemstone of chalcedony group) have multifaceted values that informed their study. Traditional methods of geode location are less reliable, hence the attempt to use the GPR method. Measurements were taken at two study test sites with subsurface geology of weathered melaphyre and pyroclastic deposits using a GPR system (ProEx). A high-frequency antenna (1.6 GHz) was used along with the pre-established profiles of lengths of 6-m and 10-cm intervals. Furthermore, simple soil tests using the soil sampler tool were made prior to the GPR measurement. The GPR results show significant high attenuation of the electromagnetic energy interpreted to be due to clay components of the regolith. Advanced signal processing procedures (such as the attribute of the signal) were used on the data for better enhancement that aided interpretation. Other anomalies depicted on the radargrams were thought to be the presence of roots, pieces of melaphyres-targeted agates. Furtherance to ascertain the reflection coefficients as recorded on the GPR data, in situ samples (root pieces, melaphyres, agates) taken were tested in the laboratory for electric permittivity property. Based on the interpretation results, several agate geodes were dug out from the ground.


2021 ◽  
Vol 22 (12) ◽  
pp. 6618
Author(s):  
Ruth Prieto-Montero ◽  
Alejandro Prieto-Castañeda ◽  
Alberto Katsumiti ◽  
Miren P. Cajaraville ◽  
Antonia R. Agarrabeitia ◽  
...  

BODIPY dyes have recently attracted attention as potential photosensitizers. In this work, commercial and novel photosensitizers (PSs) based on BODIPY chromophores (haloBODIPYs and orthogonal dimers strategically designed with intense bands in the blue, green or red region of the visible spectra and high singlet oxygen production) were covalently linked to mesoporous silica nanoparticles (MSNs) further functionalized with PEG and folic acid (FA). MSNs approximately 50 nm in size with different functional groups were synthesized to allow multiple alternatives of PS-PEG-FA decoration of their external surface. Different combinations varying the type of PS (commercial Rose Bengal, Thionine and Chlorine e6 or custom-made BODIPY-based), the linkage design, and the length of PEG are detailed. All the nanosystems were physicochemically characterized (morphology, diameter, size distribution and PS loaded amount) and photophysically studied (absorption capacity, fluorescence efficiency, and singlet oxygen production) in suspension. For the most promising PS-PEG-FA silica nanoplatforms, the biocompatibility in dark conditions and the phototoxicity under suitable irradiation wavelengths (blue, green, or red) at regulated light doses (10–15 J/cm2) were compared with PSs free in solution in HeLa cells in vitro.


Sign in / Sign up

Export Citation Format

Share Document